
RoboCup 2003

Thomas R̈ofer

Center for Computing Technology,
FB 3 Informatik,

Universiẗat Bremen,
Postfach 330440,

28334 Bremen, Germany

Oskar von Stryk
Ronnie Brunn
Martin Kallnik
Michael Kunz

Sebastian Petters
Max Risler

Maximilian Stelzer

Fachgebiet Simulation und Systemoptimierung,
FB 20 Informatik,

Technische Universität Darmstadt,
Alexanderstrasse 10,

64283 Darmstadt, Germany

Hans-Dieter Burkhard
Uwe Düffert

Jan Hoffmann
Daniel G̈ohring
Matthias J̈ungel
Martin Lötzsch

Institut für Informatik,
LFG Künstliche Intelligenz,

Humboldt-Universiẗat zu Berlin,
Rudower Chaussee 25,
12489 Berlin, Germany

Ingo Dahm
Michael Wachter

Kai Engel
André Osterhues

Carsten Schumann
Jens Ziegler

Computer Engineering Institute,
Chair of Systemanalysis,
University of Dortmund,

Otto-Hahn-Strasse 4,
44221 Dortmund, Germany

Abstract

The GermanTeam is a joint project of several German universities in the Sony Legged Robot
League. This report describes the software developed for the RoboCup 2003 in Padova. It
presents the software architecture of the system as well as the methods that were developed
to tackle the problems of motion, image processing, object recognition, self-localization, and
robot behavior. The approaches for both playing robot soccer and mastering the challenges are
presented. In addition to the software actually running on the robots, this document will also give
an overview of the tools the GermanTeam used to support the development process.

In an extensive appendix, several topics are described in detail, namely the installation of
the software, how it is used, the implementation of inter-process communication, streams, and
debugging mechanisms, and the approach of the GermanTeam to model the behavior of the
robots.

Contents

1 Introduction 1
1.1 History . 1
1.2 Scientific Goals. 1

1.2.1 Humboldt-Universiẗat zu Berlin . 1
1.2.2 Technische Universität Darmstadt . 2
1.2.3 Universiẗat Bremen. 3
1.2.4 Universiẗat Dortmund . 3

1.3 Contributing Team Members. 4
1.3.1 Aibo Team Humboldt (Humboldt-Universität zu Berlin) 4
1.3.2 Darmstadt Dribbling Dackels (Technische Universität Darmstadt) 4
1.3.3 Bremen Byters (Universität Bremen) 4
1.3.4 Microsoft Hellhounds (Universität Dortmund). 5

1.4 Structure of this Document. 5

2 Architecture 6
2.1 Platform-Independence. 6

2.1.1 Motivation . 6
2.1.2 Realization. 7
2.1.3 Supported Platforms. 8
2.1.4 Math Library . 8

2.1.4.1 Provided Data Types. 8
2.2 Multiple Team Support. 9

2.2.1 Tasks . 9
2.2.2 Debugging Support. .11
2.2.3 Process-Layouts. .11

2.2.3.1 Communication between Processes. 11
2.2.3.2 Different Layouts. 13

2.2.4 Make Engine. .13
2.2.4.1 Dependencies. 13
2.2.4.2 Realization. .14
2.2.4.3 Debugging and Optimization. 14
2.2.4.4 Automation and Integration. 14

i

ii CONTENTS

3 Modules in GT2003 16
3.1 Body Sensor Processing. .18
3.2 Vision .19

3.2.1 Using a Horizon-Aligned Grid. 20
3.2.2 Detecting Points on Edges. 22
3.2.3 Detecting the Ball .22
3.2.4 Detecting Flags. .24
3.2.5 Detecting Goals. .24
3.2.6 Detecting Robots. .24
3.2.7 Detecting Obstacles. .25

3.3 Self-Localization .26
3.3.1 Single Landmark Self-Locator. 26

3.3.1.1 Approach .26
3.3.1.2 Results. .29

3.3.2 Monte-Carlo Self-Locator. 30
3.3.2.1 Motion Model . 30
3.3.2.2 Observation Model. 31
3.3.2.3 Resampling. 32
3.3.2.4 Estimating the Pose of the Robot. 33
3.3.2.5 Results. .35

3.3.3 Lines Self-Locator. .35
3.3.3.1 Observation Model. 36
3.3.3.2 Drawing from Observations. 38
3.3.3.3 Correcting the Posture Based on Measurements. 39
3.3.3.4 Experiments. 39

3.4 Ball Modeling. .41
3.4.1 Ball Position and Ball Speed. 41
3.4.2 Communicated Information About the Ball. 41

3.5 Obstacle Model. .42
3.5.1 Updating the Model with new Sensor Data. 43
3.5.2 Updating the Model Using Odometry. 43

3.6 Collision Detector. .44
3.7 Player Modeling. .46

3.7.1 Determining Robot Positions from Distributions. 46
3.7.2 Integration of Team Messages. 46

3.8 Behavior Control .47
3.8.1 The Extensible Agent Behavior Specification Language XABSL. 48

3.8.1.1 The Architecture behind XABSL. 48
3.8.1.2 The XML Specification. 49

3.8.2 The Behaviors of the GermanTeam. 51
3.8.3 Continuous Basic Behaviors. 52

3.9 Motion. .53
3.9.1 Walking. .54

CONTENTS iii

3.9.1.1 Approach .55
3.9.1.2 Parameters. .55
3.9.1.3 Odometry correction values. 58
3.9.1.4 Inverse kinematics. 58

3.9.2 Special Actions. .62
3.9.3 Head Motion Control. .63

3.9.3.1 Head Control Modes. 63
3.9.3.2 HeadControl State Machine. 64
3.9.3.3 Head Path Planner. 64
3.9.3.4 Joint Protection. 64

4 Challenges 66
4.1 Black And White Ball. .66

4.1.1 Detection of the ball. .66
4.1.2 Behavior for the Ball Challenge. 67
4.1.3 Results .68

4.2 Localization. .68
4.2.1 Behavior Control. .68
4.2.2 Head Control. .69
4.2.3 Results .70

4.3 Obstacle Avoidance. .70

5 Tools 72
5.1 SimGT2003. .72

5.1.1 Simulation Kernel .73
5.1.2 User Interface. .74
5.1.3 Controller. .76

5.2 RobotControl .76
5.3 Router. .78
5.4 Motion Net Code Generator. .80
5.5 Emon Log Parser. .81

6 Conclusions and Outlook 82
6.1 The Competitions in Padova. .82
6.2 Future Work. .83

6.2.1 Humboldt-Universiẗat zu Berlin . 83
6.2.2 Technische Universität Darmstadt . 84
6.2.3 Universiẗat Bremen. .85
6.2.4 Universiẗat Dortmund . 86

7 Acknowledgments 87

iv CONTENTS

A Installation 89
A.1 Required Software .89
A.2 Source Code. .89

A.2.1 Robot Code. .90
A.2.2 Tools Code .91

A.3 The Developer Studio Workspace GT2003.dsw. 91

B Getting Started 93
B.1 First Steps with RobotControl. 93

B.1.1 Looking at Images. .93
B.1.2 Discover the Simulator. 94

B.2 Playing Soccer with the GermanTeam. 94
B.2.1 Preparing Memory Sticks. 94
B.2.2 Establishing a WLAN Connection. 95
B.2.3 Operate the Robots. .95

B.3 Explore the Possibilities of the Robot. 96
B.3.1 Send Images from the Robot and Create a Color Table. 96
B.3.2 Create Own Kicks .96
B.3.3 Test simple behaviors. .97

B.3.3.1 Test Basic Behaviors. 97
B.3.3.2 Test Options. 97

B.4 Configuration Files. .97
B.4.1 location.cfg. .98
B.4.2 coltable.cfg. .98
B.4.3 camera.cfg .98
B.4.4 player.cfg. .99
B.4.5 robot.cfg .99
B.4.6 wlanconf.txt .100

C Processes, Senders, and Receivers 101
C.1 Motivation. .101
C.2 Creating a Process. .101
C.3 Communication. .103

C.3.1 Packages. .103
C.3.2 Senders. .104
C.3.3 Receivers. .105

D Streams 107
D.1 Motivation. .107
D.2 The Classes Provided. .107
D.3 Streaming Data. .109
D.4 Making Classes Streamable. .110

D.4.1 Streaming Operators. .110

CONTENTS v

D.4.2 Streaming usingread()andwrite() .112
D.5 Implementing New Streams. .113

E Debugging Mechanisms 115
E.1 Message Queues. .115
E.2 Generic Debug Data. .117
E.3 Debug Keys. .119
E.4 Debug Macros .120
E.5 Debug Drawings .120
E.6 Modules and Solutions. .121
E.7 Stopwatch. .122

F XABSL Language Reference 123
F.1 Modularity .123
F.2 Symbol Definitions. .125
F.3 Basic Behavior Prototypes. .128
F.4 Prototypes for Options. .130
F.5 Options .131
F.6 States .133
F.7 Decision Trees .135
F.8 Boolean Expressions. .136
F.9 Decimal Expressions. .137
F.10 Agents. .140

G XABSL Tools 143
G.1 Adopting the Makefile .144
G.2 Using the Makefile .144

H The Xabsl2Engine Class Library 146
H.1 Files of the Xabsl2Engine. .146
H.2 Running the Xabsl2Engine on a Specific Target Platform.147
H.3 Creating a New Engine. .149
H.4 Registering Symbols. .149
H.5 Registering Basic Behaviors. .152
H.6 Creating the Option Graph. .153
H.7 Executing the Engine. .153
H.8 Debugging Interfaces. .153

I SimGT2003 Usage 156
I.1 Introduction .156
I.2 Getting Started .157
I.3 Views .157

I.3.1 Scene View. .157

vi CONTENTS

I.3.2 Robot View .158
I.3.3 Information Views .158

I.3.3.1 Image Views. .158
I.3.3.2 Field Views .159
I.3.3.3 Xabsl2 Views .160

I.4 Scene Description Files. .160
I.5 Console Commands. .161

I.5.1 Initialization Commands. .161
I.5.2 Global Commands. .162
I.5.3 Robot Commands. .163

I.6 Examples .165
I.6.1 Recording a Log File. .165
I.6.2 Replaying a Log File. .166
I.6.3 Remote Control. .167

J RobotControl Usage 169
J.1 Starting RobotControl. .169
J.2 Application Framework. .169

J.2.1 The Debug Keys Toolbar. .169
J.2.2 The Configuration Toolbar. .171
J.2.3 The Settings Dialog. .171
J.2.4 The Log Player Toolbar. .172
J.2.5 WLan Toolbar .172
J.2.6 Game Toolbar. .172

J.3 Visualization .173
J.3.1 Image Viewer and Large Image Viewer.173
J.3.2 Field View and Radar Viewer. .174
J.3.3 Radar Viewer 3D. .175
J.3.4 Color Space Dialog. .175
J.3.5 Value History Dialog. .175
J.3.6 Time Diagram Dialog .176

J.4 The Simulator. .176
J.5 Debug Interfaces for Modules. .178

J.5.1 Xabsl2 Behavior Tester. .178
J.5.2 Motion Tester Dialog. .179
J.5.3 Head Motion Tester Dialog. .180
J.5.4 Mof Tester Dialog .181
J.5.5 Joystick Motion Tester Dialog. .181

J.6 Color Calibration. .182
J.6.1 The Color Table Dialog. .182
J.6.2 HSI Tool Dialog .183
J.6.3 The TSL Color Segmentation Dialog.186
J.6.4 Camera Toolbar. .187

CONTENTS vii

J.7 Other Tools .187
J.7.1 Debug Message Generator Dialog. .187

Chapter 1

Introduction

1.1 History

The GermanTeam is the successor of the Humboldt Heroes who already participated in the Sony
Legged League competitions in 1999 and 2000. Because of the strong interest of other Ger-
man universities, in March 2001, the GermanTeam was founded. It consists of students and
researchers of five universities: Humboldt-Universität zu Berlin, Universiẗat Bremen, Technis-
che Universiẗat Darmstadt, Universität Dortmund and Freie Universität Berlin. For the RoboCup
2001, the Humboldt Heroes only had reinforcements from Bremen and Darmstadt during the last
two or three month before the world championship in Seattle took place.

Since 2002, only the Freie Universität Berlin has not provided active team members. There-
fore, the system presented in this document is the result of the work of the team members from the
other four universities. Each of these four groups has its own team in the Sony Legged RoboCup
League, but they only participated separately in the German Open 2002 and 2003 in Paderborn
and formed a single national team in Fukuoka and Padova. The four teams are theAibo Team
Humboldt(Berlin), theBremen Byters, theDarmstadt Dribbling Dackels, and theMicrosoft Hell-
hounds(Dortmund).

1.2 Scientific Goals

All the universities participating have special research interests, which they try to carry out in the
GermanTeam’s software.

1.2.1 Humboldt-Universität zu Berlin

The main interests of Humboldt University’s researchers are robotic architectures for au-
tonomous robots based on mental models and the development of complex behavior control
architectures. For robots with complex tasks in natural environments, it is necessary to equip
them with behavior control architectures that allow planning based on incomplete information

1

2 CHAPTER 1. INTRODUCTION

about the environment, cooperation with and without communication, and actions directed to dif-
ferent goals. These architectures have to integrate both long-term plans and short-term reactive
behaviors. On the one hand, they should not stick to dead end decisions, but on the other hand,
they should also not change their intentions too frequently for a goal to be reached.

The behavior architecture first developed in 2001 was improved and an XML dialect
(“XABSL”) for describing behaviors was added in 2002 and largely improved in 2003. It will
ultimately be joined with the case based reasoning approach developed in our Simulation League
team giving us more flexibility in testing behaviors and allowing for knowledge transfer between
the different leagues.

In contrast to other RoboCup leagues, elemental “skills” of the robot are still of integral
importance in the Sony league (mainly due to the many degrees of freedom). By skills we mean
low level behaviors and actions such as locomotion, ball kicking, searching for the ball, and
other perception related tasks. These cannot be viewed as only being sensory processes or simple
sequences of motor commands but instead as complex control loops that are hard to model in
a high level sense-think-act-architecture. Therefore we plan to follow a more holistic, nature-
inspired approach to modeling such processes (see chapter6.2.1for details).

1.2.2 Technische Universiẗat Darmstadt

The long-term goals of the team in Darmstadt are conceptual and algorithmic contributions to
all sub-problems involved for a successful autonomous team of soccer playing legged robots
(perception, localization, locomotion, behavior control).

The group in Darmstadt is developing tools for an efficient kinetic modeling and simulation
of legged robot dynamics taking into account masses and inertias of each robot link as well as
motor, gear and controller models of each controlled joint. Based on these nonlinear dynamic
models computational methods for simulation, dynamic off-line optimization and on-line sta-
bilization and control of dynamic walking and running gaits are developed and applied. These
methods currently are applied to develop and implement new, fast, and stable locomotion for
legged robots, namely the Sony four-legged robots and a new humanoid robot under develop-
ment. Until June 2002 a complete three-dimensional dynamical model of the Sony four-legged
robot has been implemented based on the kinematic and kinetic data provided by Sony. This
model has been used to optimize a fast trot gait in simulation using numerical optimal control
methods. In May 2003 the simulation results have been validated through experiments as well as
the model has been refined to achieve better agreement to the real motor data and to avoid slip-
ping of the robot’s feet on ground. Currently other gait patterns with less symmetry in the feet’s
relative phases, for which optimization is more demanding but which might lead to faster gaits,
are considered. Our goal is to have a large variety of different gait patterns for optimal gaits.

However, new methods for planning and controlling legged locomotion of anautonomous
robot cannot be investigated independently from the limited hard- and software resources which
must be shared with other modules under real-time constraints. Thus, for the competitions in
2003, a fast self-localization algorithm combining Monte-Carlo and single landmark approaches,
low-level behavior algorithms using potential fields and an improved walking engine have been

1.2. SCIENTIFIC GOALS 3

developed in addition to the modules contributed by the other German universities. The new
modules have been tested successfully during the RoboCup German Open in April.

1.2.3 Universiẗat Bremen

The main research interest of the group in Bremen is the automatic recognition of the plans of
other agents, in particular, of the opposing team in RoboCup. A new challenge in the development
of autonomous physical agents is to model the environment in an adequate way. In this context,
modeling of other active entities is of crucial importance. It has to be examined, how actions of
other mobile agents can be identified and classified. Their behavior patterns and tactics should be
detected from generic actions and action sequences. From these patterns, future actions should
be predicted, and thus it is possible to select adequate reactions to the activities of the opponents.
Within this scenario, the other physical agents should not to be regarded individually. Rather it
should be assumed that they form a self-organizing group with a common goal, which contradicts
the agent’s own target. In consequence, an action of the group of other agents is also a threat
against the own plans, goals, and preferred actions, and must be considered accordingly. Acting
under the consideration of the actions of others presupposes a high degree of adaptability and the
capability to learn from previous situations. Thus these research areas will also be emphasized
in the project.

The research project focuses on plan recognition detection of agents in general. However, the
RoboCup is an ideal test-bed for the methods to be developed. The technology of plan recognition
is of large interest in two research areas: on the one hand, the quality of forecasting the actions
of physical agents can be increased, which plays an important role in the context of controlling
autonomous robots, on the other hand, it can be employed to increase the robustness and secu-
rity of electronic markets. This project is also part of the priority program “Cooperating teams
of mobile robots in dynamic environments” funded by the Deutsche Forschungsgemeinschaft
(German Research Foundation).

In the Sony Legged Robot League, it is the goal of the group from Bremen to establish a
robust and stable world model that will allow techniques for opponent modeling developed in
the simulation league to be applied to a league with real robots.

1.2.4 Universiẗat Dortmund

The team of the University of Dortmund focuses its research interests on the problems of both
sensor fusion and collective behavior.

The former is the combination of different sensor data information in order to build a sensor-
fusion based world model. Therefore, efficient techniques to communicate and merge the differ-
ent world models of the robots are implemented and analyzed. In order to reduce the influence
of noisy sensor information, a common problem in the domain of real robots, an increased re-
liability of object classification is desired. Due to the fact that visual input is the main sensor
information in the four-legged league, the focus of activities in this field lies in increasing the
quality of the team’s object recognition system.

4 CHAPTER 1. INTRODUCTION

First of all, a novel color classification scheme is introduced, which is adapted to the special
needs of robot soccer, e.g. to the quality of the camera images or to the available processing
power. In this new TSL representation, all relevant1 colors are represented by transforming the
YUV-chrominance space into a new chroma spaceautomatically. Evolutionary algorithms, a
powerful optimization technique mimicking Darwinian evolution, have successfully been used
to optimize this transformation to robot soccer needs by means of Evolutionary Algorithms.

The term collective behavior addresses the problem of controlling a team of multiple soccer
robots coherently. We developed a method for controlling a team of robots based on merged
sensor information and the corresponding extracted reliability-information.

1.3 Contributing Team Members

At the four universities providing active team members, many people contributed to the German-
Team:

1.3.1 Aibo Team Humboldt (Humboldt-Universität zu Berlin)

“Diplom” Students. Uwe Düffert, Daniel G̈ohring, Matthias J̈ungel, Martin L̈otzsch.

PhD Student. Jan Hoffmann (Aibo Team Humboldt team leader).

Professor. Hans-Dieter Burkhard.

1.3.2 Darmstadt Dribbling Dackels (Technische Universiẗat Darmstadt)

“Diplom” Students. Ronnie Brunn, Marc Dassler, Martin Kallnik, Michael Kunz, Sebastian
Petters, Max Risler, Dirk Thomas.

PhD Student. Max Stelzer.

Professor. Oskar von Stryk (Darmstadt Dribbling Dackels team leader).

1.3.3 Bremen Byters (Universiẗat Bremen)

“Diplom” Students. Tim Laue, Tim Riemenschneider.

Assistant Professor. Thomas R̈ofer (GermanTeam speaker, Bremen Byters team leader).

1Only ten different colors are used, all other colors can be neglected.

1.4. STRUCTURE OF THIS DOCUMENT 5

1.3.4 Microsoft Hellhounds (Universiẗat Dortmund)

“Diplom” Students. Arthur Cesarz, Sebastian Deutsch, Thomas Dickhöfer, Wenchuan Ding,
Kai Engel, Matthias Hebbel, Peter Kudlacik, Andre Osterhues, Jan Prünte, Andreas Reiss, Se-
bastian Schmidt, Carsten Schumann, Christian Thiel, Michael Wachter.

PhD Students. Ingo Dahm, Jens Ziegler (Microsoft Hellhounds team leaders), Christoph
Richter.

1.4 Structure of this Document

This document gives a complete survey over the software of the GermanTeam, i. e. it does not
just describe the differences between last year’s version [3] and the actual one. Thus new teams
only have to read this year’s documentation. However, people who already read the report from
the year ago will find many repetitions.

Chapter2 describes the software architecture implemented by the GermanTeam. It is moti-
vated by the special needs of a national team, i.e. a “team of teams” from different universities
in one country that compete against each other in national contests, but that will jointly line up
at the international RoboCup championship. In this architecture, the problem of a robot playing
soccer is divided into several tasks. Each task is solved by amodule. The implementations of
these modules for the soccer competition are described in chapter3. Chapter4 describes the
solutions for the three so-called challenges.

Only half of the approximately 250,000 lines of code that were written by the GermanTeam
for the RoboCup 2003 are actually running on the robots. The other half was invested in powerful
tools that provide sophisticated debugging possibilities including the first 3-D simulator for the
Sony Legged Robot League. These tools are presented in chapter5.

The main part of this report is finished by concluding the results achieved in 2003 and giving
an outlook on the future perspectives of the GermanTeam in 2004 in chapter6.

In the appendix, several issues are described in more detail. It starts with an installation guide
in appendixA. AppendixB is a quick guide how to setup the robots of the GermanTeam to play
soccer and how to use the tools. Then, the GermanTeam’s abstraction ofprocesses, senders, and
receiversis presented in appendixC, followed by appendixD onstreamsand appendixE on the
debugging support. The appendicesF, G, andH contain a detailed documentation of the behavior
engine used by the GermanTeam in Padova. Finally, the appendicesI andJdescribe the usage of
SimGT2003 and RobotControl, the two main tools of the GermanTeam.

Chapter 2

Architecture

The GermanTeam is an example of a national team. The members participated as separate teams
in the German Open 2002 and 2003, but formed a single team at the RoboCup in Fukuoka
and Padova. Obviously, the results of the team would not have been very good if the members
developed separately until the middle of April, and then tried to integrate their code to a single
team in only two months. Therefore, an architecture for robot control programs was developed
that allows implementing different solutions for the tasks involved in playing robot soccer. The
solutions are exchangeable, compatible to each other, and they can even be distributed over a
variable number of concurrent processes. The approach will be described in section2.2. Before
that, section2.1 will motivate why the robot control programs are implemented in a platform-
independent way, and how this is achieved.

2.1 Platform-Independence

One of the basic goals of the architecture of the GermanTeam wasplatform-independence, i. e.
the code shall be able to run in different environments, e. g. on real robots, in a simulation, or—
parts of it—in different RoboCup leagues.

2.1.1 Motivation

There are several reasons to enforce this approach:

Using a Simulation. A Simulation can speed up the development of a robot team significantly.
On the one hand, it allows writing and testing code without using a real robot—at least for a
while. When developing on real robots, a lot of time is wasted with transferring updated pro-
grams to the robot via a memory stick, booting the robot, charging and replacing batteries, etc.
In addition, simulations allow a program to be tested systematically, because the robots can auto-
matically be placed at certain locations, and information that is available in the simulation, e. g.
the robot poses, can be compared to the data estimated by the robot control programs.

6

2.1. PLATFORM-INDEPENDENCE 7

Sharing Code between the Leagues.Some of the universities in the GermanTeam are also
involved in other RoboCup leagues. Therefore, it is desirable to share code between the leagues,
e. g. the behavior control architecture between the Sony Legged Robot League and the Simulation
League.

Non Disclosure Agreement. Until RoboCup 2002, only the participants in the Sony Legged
Robot League got access to internal information about the software running on the Sony AIBO
robot. Therefore, the universities of all members of the league signed a non disclosure agreement
to protect this secret information. As a result and in contrast to other leagues, the code used to
control the robots during the championship was only made available to the other teams in the
league, but not to the public. This has changed in June 2002, when Open-R became publicly
available, but already before, the GermanTeam wanted to be able to publish a version of the
system without violating the NDA between the universities and Sony by encapsulating the NDA-
relevant code and by the means of the simulator (cf. Sect.5.1). Although the Open-R SDK is now
publicly available, there is no reason for the GermanTeam to remove the platform-independent
encapsulation from their code.

2.1.2 Realization

It turned out that platform-dependent parts are only required in the following cases:

Initialization of the Robot. Most robots require a certain kind of setup, e. g., the sensors and
the motors have to be initialized. Most parameters set during this phase are not changed again
later. Therefore, these initializations can be put together in one or two functions. In a simulation,
the setup is most often performed by the simulator itself; therefore, such initialization functions
can be left empty.

Communication between Processes.As most robot control programs will employ the advan-
tages of concurrent execution, an abstract interface for concurrent processes and the communica-
tion between them has to be provided on each platform. The communication scheme introduced
by the GermanTeam 2002 is illustrated in section2.2.3.1and in appendixC.

Reading Sensor Data and Sending Motor Commands.During runtime, the data to be ex-
changed with the robot and the robot’s operating system is limited to sensor readings and actua-
tor commands. In case of the software developed by the GermanTeam in 2002, it was possible to
encapsulate this part as a communication between processes, i. e. there is no difference between
exchanging data between individual processes of the robot control program and between parts of
the control program and the operating system of the robot.

File System Access. Typically, the robot control program will load some configuration files
during the initialization of the system. In case of the system of the GermanTeam, information as
the color of robot’s team (red or blue), the robot’s initial role (e. g. the goalie), and several tables

8 CHAPTER 2. ARCHITECTURE

(e. g. the mapping from camera image colors to the so-called color classes) are loaded during
startup.

2.1.3 Supported Platforms

Currently, the architecture has been implemented on three different platforms:

Sony AIBO Robots. The specialty of the Sony Legged Robot League is that all teams use
the same robots, and it is not allowed changing them. This allows teams to run the code of other
teams, similar to the simulation league. However, this only works if one uses the complete source
code of another team. It is normally not possible to combine the code of different teams, at least
not without changing it. Therefore, to be able to share the source code in the GermanTeam, the
architecture described above was implemented on the Sony AIBO robots. The implementation
is based on the techniques provided by Open-R that form the operation system that natively runs
on the robots.

Microsoft Windows. The platform independent environment was also implemented on Mi-
crosoft Windows as a part of a special controller inSimRobot(cf. Sect.5.1) and, sharing the
same code, in the general development support toolRobotControl(cf. Sect.5.2). Under Win-
dows, the processes are modeled as threads, i. e. all processes share the same address space. This
caused some problems with global variables, because they are not shared on the real robots,
but they are under Windows. As there is only a small amount of global variables in the code,
the problem was solved “manually” by converting them into arrays, and by maintaining unique
indices to address these arrays for all threads.

Open-R Emulator under Cygwin. The environment was also implemented on the so-called
Open-R emulator that allows parts of the robot software to be compiled and run under Linux and
Cygwin. Therouter (section5.3) that functions as a mediator between the robots and RobotCon-
trol was implemented on this platform.

2.1.4 Math Library

To have common access to frequently used mathematical data types, a math library was im-
plemented that encapsulates these data types. It provides data types for vectors (two and three
dimensional), matrices (three dimensional), rotation matrices, and translation matrices (two and
three dimensional).

2.1.4.1 Provided Data Types

Vector2<T> and Vector3<T> are template classes for vectors with two or three elements,
respectively. They provide operators for the inner product and the cross product (ˆ opera-
tor) of two vectors (cross product only forVector3<T>), and functions for the Euclidean

2.2. MULTIPLE TEAM SUPPORT 9

length, transposition, normalization, and the angle between the vector and the x-axis (only
Vector2<T>).

Matrix3x3 <T> is a template class for3×3-matrices. It provides operators to add and multiply
two matrices and operators to multiply a matrix and a vector.

RotationMatrix is a matrix especially for rotations.RotationMatrixhas various functions: func-
tions to rotate the matrix around all axes, functions returning the actual rotation around all
axes, and a function to invert the rotation matrix.

Pose2D and Pose3Dare transformation matrices in two and three dimensions. They can be mul-
tiplied with vectors andPose2Dor Pose3D, respectively. In addition they can be rotated by
angles and translated by vectors.

2.2 Multiple Team Support

The major goal of the architecture presented in this chapter is the ability to support the collab-
oration between the university-teams in the German national team. Some tasks may be solved
only once for the whole team, so any team can use them. Others will be implemented differ-
ently by each team, e. g. the behavior control. A specific solution for a certain task is called a
module. To be able to share modules, interfaces were defined for all tasks required for playing
robot soccer in the Sony Legged League. These tasks will be summarized in the next section.
To be able to easily compare the performance of different solutions for same task, it is possible
to switch between them at runtime. The mechanisms that support this kind of development are
described in section2.2.2and in appendixE. However, a common software interface cannot hide
the fact that some implementations will need more processing time than others. To compensate
for these differences, each team can use its ownprocess layout, i. e. it can group together modules
to processes that are running concurrently (cf. Sect.2.2.3).

2.2.1 Tasks

Figure2.1 depicts the tasks that were identified by the GermanTeam for playing soccer in the
Sony Legged Robot League. They can be structured into five levels:

Perception. On this level, the current states of the joints are analyzed to determine the point
the camera is looking at. The camera image is searched for objects that are known to exist on the
field, i. e. landmarks (goals and flags), field lines, other players, the ball, and general obstacles
such as the referees. The sensor readings that were associated to objects are calledpercepts. In
addition, further sensors can be employed to determine whether the robot has been picked up, or
whether it felt down.

10 CHAPTER 2. ARCHITECTURE

Object
Modeling

RobotStateDetector ObstaclesLocator SelfLocator BallLocator PlayersLocator

Perception

Behavior
Control

BehaviorControl

Motion
Control

ImageSensorDataBuffer

CollisionDetector SensorDataProcessor ImageProcessorCameraMatrix

CollisionPercept BodyPercept BallPerceptLandmarksPereptLinesPerceptObstaclesPerceptPSDPercept PlayersPercept

JointDataBufferSoundData LEDValue

SoundControl LEDControl HeadControl MotionControlHeadMotionRequest

SoundRequest MotionRequestHeadControlModeLEDRequest

RobotState ObstaclesModel PlayerPoseCollectionBallPositionRobotPose

Figure 2.1: The tasks identified by the GermanTeam 2003 for playing soccer.

Object Modeling. Percepts immediately result from the current sensor readings. However,
most objects are not continuously visible, and noise in the sensor readings may even result in
a misrecognition of an object. Therefore, the positions of the dynamic objects on the field have
to be modeled, i. e. the location of the robot itself, the poses of the other robots, the positions of
further obstacles, and the position of the ball. The result of this level is the estimatedworld state.

Behavior Control. Based on the world state, the role of the robot, and the current score, the
third level generates the behavior of the robot. This can either be performed very reactively, or
deliberative components may be involved. The behavior level sends requests to the fourth level
to perform the selected motions.

Motion Control. The final level performs the motions requested by the behavior level. It
distinguishes between motions of the head and of the body (i. e. walking). When walking or
standing, the head is controlled autonomously, e. g., to find the ball or to look for landmarks, but
when a kick is performed, the movement of the head is part of the whole motion. The motion
module also performs dead reckoning and provides this information to other modules.

2.2. MULTIPLE TEAM SUPPORT 11

This grouping is not strict; it is still possible to implement modules that handle more than
a single task, such as theSensorBehaviorControlthat includes the first three layers in a single
module. However, it was not used in the competitions; instead it is mostly used for teaching.

2.2.2 Debugging Support

One of the basic ideas of the architecture is that multiple solutions exist for a single task, and
that the developer can switch between them at runtime. In addition, it is also possible to include
additional switches into the code that can also be triggered at runtime. The realization is an
extension of the debugging techniques already implemented in the code of the GermanTeam
2001 [2]: debug requestsandsolution requests. The system manages two sets of information, the
current state of alldebug keys, and the currently active solutions. Debug keys work similar to C++
preprocessor defines, but they can be toggled at runtime (cf. Sect.E.3). A special infrastructure
called message queues(cf. Sect.E.1) is employed to transmit requests to all processes on a
robot to change this information at runtime, i. e. to activate and to deactivate debug keys and to
switch between different solutions. The message queues are also used to transmit other kinds
of data between the robot(s) and the debugging tool on the PC (cf. Sect.5.2). For example,
motion requests can directly be sent to the robot, images, text messages, and even drawings (cf.
Sect.E.5) can be sent to the PC. This allows visualizing the state of a certain module, textually
and even graphically. These techniques work both on the real robots and on the simulated ones
(cf. Sect.5.1).

2.2.3 Process-Layouts

As already mentioned, each team can group its modules together to processes of their own choice.
Such an arrangement is called aprocess layout. The GermanTeam 2002 has developed its own
model for processes and the communication between them:

2.2.3.1 Communication between Processes

In the robot control program developed by the GermanTeam 2001 for the championship in Seat-
tle, the different processes exchanged their data through a shared memory [2], i. e., a blackboard
architecture [9] was employed. This approach lacked of a simple concept how to exchange data
in a safe and coordinated way. The locking mechanism employed wasted a lot of computing
power and it only guaranteed consistence during a single access, but the entries in the shared
memory could still change from one access to another. Therefore, an additional scheme had to
be implemented, as, e. g., making copies of all entries in the shared memory at the beginning
of a certain calculation step to keep them consistent. In addition, the use of a shared memory is
not compatible to the ability of the Sony AIBO robots to exchange data between processes via a
wireless network.

The communication scheme introduced in 2002 addresses these issues. It uses standard op-
erating system mechanisms to communicate between processes, and therefore it also works via

12 CHAPTER 2. ARCHITECTURE

R
o

b
o

t

Cognition

Motion

D
e

b
u

g

Figure 2.2: The process layout of Humboldt 2002, since RoboCup 2002 used by the whole GermanTeam.

the wireless network. In the approach, no difference exists between inter-process communica-
tion and exchanging data with the operating system. Only three lines of code are sufficient to
establish a communication link. A predefined scheme separates the processing time into two
communication phases and a calculation phase.

The inter-object communication is performed bysendersandreceiversexchangingpackages.
A sender contains a single instance of a package. After it was instructed to send the package, it
will automatically transfer it to all receivers as soon as they have requested the package. Each
receiver also contains an instance of a package. The communication scheme is performed by
continuously repeating three phases for each process:

1. All receivers of a process receive all packages that are currently available.

2. The process performs its normal calculations, e. g. image processing, planning, etc. During
this, packages can already be sent.

3. All senders that were directed to transmit their package and have not done it yet will send
it to the corresponding receivers if they are ready to accept it.

Note that the communication does not involve any queuing. A process can miss to receive
a certain package if it is too slow, i. e., its computation in phase 2 takes too much time. In this
aspect, the communication scheme resembles the shared memory approach. Whenever a process
enters phase 2, it is equipped with the most current data available.

Both senders and receivers can either be blocking or non-blocking objects. Blocking objects
prevent a process from entering phase 2 until they were able to send or receive their package, re-
spectively. For instance, a process performing image segmentation will have a blocking receiver
for images to avoid that it segments the same image several times. On the other hand, a process
generating actuator commands will have a blocking sender for these commands, because it is
necessary to compute new ones only if they were requested for. In that case, the ability to im-
mediately send packages in phase 2 becomes useful: the process can pre-calculate the next set of
actuator commands, and it can send them instantly after they have been asked for, and afterwards
it pre-calculates the next ones.

The whole communication is performed automatically; only the connections between senders
and receivers have to be specified. In fact, the command to send a package is the only one that
has to be called explicitly. This significantly eases the implementation of new processes.

2.2. MULTIPLE TEAM SUPPORT 13

2.2.3.2 Different Layouts

Since RoboCup 2002, the GermanTeam uses a simple process layout (cf. Figure2.2) that was
originally introduced by Humboldt 2002, consisting of only three modules. More complex lay-
outs developed by the Bremen Byters and the Darmstadt Dribbling Dackels turned out to have
more disadvantages than advantages in timing measurements. The first three levels of the archi-
tecture are all integrated into the processCognition, because all of them only work with up to
date sensor data. The processMotion is separate, because sending motor commands always has
to work with full frame rate, even if image processing takes too much time. The processDebug
collects and distributes messages sent through message queues from and to the other processes
and the PC. It is only used during the development, and it is inactive in actual RoboCup games.

2.2.4 Make Engine

Using different process layouts requires a quite sophisticated engine to compile the source code.
As it is desirable that each process only contains the code that it needs, complex dependencies
exist between compilation targets and the source files. For the code that is compiled for Mi-
crosoft Windows, process layouts can be represented easily by different project configurations.
In addition, it is not required to determine the source code relevant for each process, because
under Windows, processes are implemented as threads, and these threads are all part of the same
program.

However, on the AIBO, each process is a different binary file, and because memory con-
sumption is crucial, processes should be as small as possible, i. e. only the object files required
by a process should be linked together.

2.2.4.1 Dependencies

The directory structure of the source code of the GermanTeam does not reflect which source
file belongs to which binary, because the source files have to be grouped based on the selected
process layout. In one layout, e. g., several files share the same process while they are distributed
over multiple processes in another layout.

Generating dependencies, creating object files, and linking them together is quite time con-
suming, especially in huge projects that require permanent modifications, expansions, testing,
and fine-tuning. Therefore, one major goal of implementing amake enginewas to execute only
the steps absolutely necessary to get a complete build without missing any modifications in
source code.

Therefore, a fast and flexible way to generate dependencies between source files and binaries
was required. In 2002, the compiler (e. g. thegcc) was used to generate object dependencies.
This turned out to be very time consuming and required an additional mechanism (not working
in all cases) to find out which object dependencies had to be rebuild when certain source files
changed. For this year’s competition, a simple speed optimized pre-processor calledDepend
(GT2003/Src/Depend) written in C was developed to speed up the generation of dependencies
and to make them more reliable.

14 CHAPTER 2. ARCHITECTURE

2.2.4.2 Realization

For each combination of the chosen process layout, build variant and compiler used, the make
engine uses a separate build directory ($PDIR, located inGT2003/Build) to avoid conflicts be-
tween different builds as well as the compulsion for a complete rebuild after changing the process
layout, build variant, or compiler. Each such$PDIR has two subdirectories:bin contains the bi-
naries andobj contains objects in the same subdirectory structure as the source code. All these
directories will be (re)generated with each start of the build process to be sure not to miss any
structural changes.

ThenDependis used to completely generate all dependencies for the chosen build target in
GT2003/Build/*/*/depends.incleach time. Even with several hundreds of source files, this takes
only a few seconds.Dependchecks all includes in all source files takingdefinesand if[n]defs
into account. Based on this information, it creates a list of all directly or indirectly included files
for each*.cpp file. Thus, all object dependencies for every object possibly needed are available.

After that, all object files required for a certain binary can easily be determined byDepend
if the code follows some usual conventions such as the existence of header files (*.h) and imple-
mentation files (*.cpp), and if all items declared in a header file are either implemented by an
implementation file with the same base name, or by the header file itself. This results in a list
of all object files needed to be linked together for every binary / process of the chosen process
layout. So a compiler will never have to touch a source file that is not needed to be linked with
one of the binaries, because there is no dependency to it.

2.2.4.3 Debugging and Optimization

Compilers and linkers can be forced to output as many useful warnings as possible, to optimize
the code for speed and a certain target architecture such as MIPS R4300 or to simplify debugging
e. g. by add debugging symbols. The make engine uses all those options according to the chosen
build variant to maximize speed or debuggability or minimize compile time as much as possible.

2.2.4.4 Automation and Integration

In 2002, the project files of Visual Studio had to be updated manually each time the structure
of the source code tree changed or files were added or removed. The capability to generate
all dependencies and therefore a list of all files used withDependin a short time allows it to
generate Visual Studio project files easily from these dependencies. This simplifies maintaining
the consistency between the source code tree and the project files. All scripts necessary for that
can be found inGT2003/Src/Depend/.

It is possible to update or completely rebuild a certain process layout (e. g. CMD) in a special
build variant (e. g. Debug) with a single command, either from the command line, e. g. with
./GT.bash CMD Debug, or from the Microsoft Visual Studio, e. g. by selectingRebuildor Rebuild
All. All important messages produced by commands in the build process, e. g. error messages of
the compiler are converted immediately to a format that is understood by the Visual Studio. Thus,
the list of errors and warnings can be browsed by the usual commands, presenting the source files

2.2. MULTIPLE TEAM SUPPORT 15

the messages refer to. This is done with several kinds of source files: not only with source code
(*.cpp and*.h), but also with motion descriptions (*.mof).

Chapter 3

Modules in GT2003

The GermanTeam has split the robot’s information processing intomodules(cf. Sect.2.1). Each
module has a specific task and well-defined interfaces. Different exchangeablesolutionsexist for
many of the modules. This allows the four universities in the team to test different approaches
for each task. In addition, existing and working module solutions can remain in the source code
while new solutions can be developed in parallel. Only if the new version is better than the
existing ones (which can be tested at runtime), it becomes thedefault solution. Mechanisms for
declaring modules and for switching solutions at runtime are described in sectionE.6.

This chapter describes most of the modules that were implemented. For some solutions only
the chosen approach is figured out in detail. The following table lists all modules with all solu-
tions in the code release. Thedefault solutionis the solution that was used by the GermanTeam
for the RoboCup competitions in Padova (marked underlined).

module / task solutions developed
by

SensorDataProcessor:
Processing of body
sensor data.

DefaultSensorDataProcessor: Calculates the offset
and rotation of the camera relative to the ground
and detects pressed switches (cf. Sect.3.1).

Darmstadt

ImageProcessor: Per-
ceiving visual percepts
from images.

GT2003ImageProcessor: Scans regions near the
horizon for interesting objects using a grid. (cf.
Sect.3.2).

Berlin
Bremen
Darmstadt

GridImageProcessor2: Used for auto adaptation
experiments. (cf. [10]).

Berlin

GridImageProcessorTSL: Used for experiments
with TSL color space. (cf. [5]).

Dortmund

GridImageProcessor3: Used for recognition of the
black and white ball. (cf. Sect.4.1).

Dortmund

CheckerboardDetector: Used to recognize a pattern
for motion calibration.

Berlin

16

17

BallLocator: Model-
ing of ball position

PIDSmoothedBallLocator: Smooths the ball per-
cepts (cf. Sect.3.4).

Berlin

BallChallengeBallLocator: Was used for the ball
challenge.

Dortmund

ObstaclesLocator:
Modeling of the free
parts of the field
around the robot.

DefaultObstaclesLocator: Was used in the games
and for challenge 3 (cf. Sect.3.5).

Berlin
Darmstadt

CollisionDetector:
Recognizes collisions.

DefaultCollisionDetector: Detects collisions by
comparison of motor commands and actual move-
ment (as sensed by the servo’s position sensor). Not
used in the games. (cf. Sect.3.6).

Berlin

PlayersLocator: Mod-
eling of player posi-
tions.

GO2003PlayersLocator: Player modeling using a
grid from the GermanTeam’s 2001 project. Not
used in the games (cf. Sect.3.7).

Darmstadt

SelfLocator: Estima-
tion of the robot’s
pose.

Fusion2003SelfLocator: Combination of GT2003
and SingleLandmark approaches that uses flags,
goal posts, and field lines.

Bremen
Darmstadt

FusionSelfLocator: Combination of MonteCarlo
and SingleLandmark approaches that uses flags and
goal posts.

Bremen
Darmstadt

GT2003SelfLocator: Monte-Carlo-based approach
that uses flags, goal posts, and field lines.

Bremen

LinesSelfLocator: Monte-Carlo-based approach
that uses the field lines (cf. Sect.3.3.3).

Bremen

MonteCarloSelfLocator: Monte-Carlo-based ap-
proach that uses flags and goal posts (cf.
Sect.3.3.2).

Bremen

SingleLandmarkSelfLocator: Uses detection of
a single flag or goal to update position (cf.
Sect.3.3.1).

Darmstadt

RobotStateDetector:
Modeling of body
sensor events.

DefaultRobotStateDetector: Detects fall downs and
measures, for how long switches were pressed.

Darmstadt

BehaviorControl:
Decision making. (cf.
Sect.3.8

GT2003BehaviorControl: An Behavior modules
inherited from Xabsl2BehaviorControl that con-
tains state machines that are organized in a tree
and formalized in the XML language XABSL2 (cf.
Sect.3.8.1). Continuous basic behaviors realized by
simple potential fields are included. Since 2002 all
universities of the GermanTeam use this behavior
formalization.

Berlin
Darmstadt
Dortmund

18 CHAPTER 3. MODULES IN GT2003

HeadControl: Control
of head movement.

GT2003HeadControl: A better structured re-
implementation of the most promising head control
approaches (cf. Sect.3.9.3).

Berlin
Bremen
Darmstadt

LEDControl: Sets the
robot’s LEDs.

DefaultLEDControl: Processes the requests from
the behavior control.

Darmstadt

SpecialActions: Kicks
and other moves.

GT2003MotionNetSpecialActions: Executes spe-
cial actions that were described in a high level mo-
tion language. (cf. Sect.3.9.2)

Berlin
Darmstadt
Dortmund

WalkingEngine: Walk-
ing

InvKinWalkingEngine: Parameterized walking en-
gine using inverse kinematics (cf. Sect.3.9.1).

Darmstadt

MotionControl: Set-
ting of the joint values.

DefaultMotionControl: Integrates head motions,
walk motions, special actions, and LED values (cf.
Sect.3.9).

Darmstadt

DebugMotionControl: A tool for developing new
motions. Works together with theMofTester Dialog
in the RobotControl application (cf. Sect.J.5.4).

Darmstadt

SoundControl: Gener-
ation and sending of
audio data.

DefaultSoundControl: Plays wave files for debug-
ging purposes.

Dortmund

SensorBehaviorControl:
Sensorimotor cou-
pling.

ObstacleAvoiderOnGreenField: Demo. The Aibo
avoids everything that is not green.

Berlin

3.1 Body Sensor Processing

The task of theSensorDataProcessoris to take the data provided by all sensors except the cam-
era, and to store them, marked with a time stamp, in a buffer. This buffer is used to calculate
average sensor values over the lastn ticks, or to pick up the sensor values for a given point in
time (usually the arrival of a new camera image).

The measurements of the acceleration sensors are used to calculate the tilt and roll of the
robot’s body. By comparing long term averages and short term averages of these measurements,
it is possible to determine whether the robot has been lifted up or whether is has fallen down.

For every incoming image, theSensorDataProcessorcalculates a matrix that represents the
pose of the camera relative to the robot’s body origin. This allows the coordinates of objects
detected in camera images to be transformed into the robot’s system of coordinates.

This transformation is composed of the following sub-transformations:

1. translation along the positive z-axis by the height of the robots neck

2. counterclockwise rotation about the x-axis by the roll angle of the body

3. counterclockwise rotation about the y-axis by the sum of the tilt angle of body and head

3.2. VISION 19

4. translation along the positive z-axis by the distance between the neck and the center of pan
rotation

5. counterclockwise rotation about the z-axis by the pan angle of the head

6. counterclockwise rotation about the x-axis by the roll angle of the head

7. translation along the positive x-axis by the distance between the center of pan rotation and
the camera

The camera matrix is calculated by multiplying the matrices describing these sub-
transformations. It is calculated for each 8 ms frame. It is also used to determine thePSD percept,
a transformation of the PSD distance measurement into robot-centric three-dimensional world
coordinates.

3.2 Vision

The vision module works on the images provided by the robot’s camera. The output of the vision
module fills the data structurePerceptCollection. A percept collection contains information about
the relative position of the ball, the field lines, the goals, the flags, the other players, and the
obstacles. Positions and angles in the percept collection are stored relative to the robot.

Goals and flags are represented by four angles. These describe the bounding rectangle of the
landmark (top, bottom, left, and right edge) with respect to the robot. When calculating these
angles, the robot’s pose (i.e. the position of the camera relative to the body) is taken into account.
If a pixel used for the bounding box was on the border of the image, this information is also
stored.

Field lines are represented by a set of points (2-D coordinates) on a line. The ball position
and also the other players’ positions are represented in 2-D coordinates. The orientations of other
robots are not calculated.

The free space around the robot is represented in theobstacles percept. It consists of a set
of lines described by anear pointand afar point on the ground, relative to the robot. The lines
describe green segments in the projection of the camera’s image to the ground. In addition, for
each far point a marking describes whether the corresponding point in the image lies on the
border of the image or not. The lines usually start at the image bottom and end where the green
of the ground ends or where the image ends (cf. Fig.3.1b). If the part of the projection of the
image that is close to the robot is not green, both points are identical and lie on the rim of the
projection. The meaning of the lines is:

• Behind the far point there is an obstacle (if the far point is not marked ason border).

• Between the near and the far point there is no obstacle.

• It is unknown whether there is an obstacle before the near point.

20 CHAPTER 3. MODULES IN GT2003

a) b)

Figure 3.1: Obstacles Percept. a) An image with an obstacle. Green lines: projection of the obstacles
percept to the image. b) The projection of the image to the ground. Green lines: obstacles percept.

The images are processed using the high resolution of176 × 144 pixels, but looking only at
a grid of less pixels. The idea is that for feature extraction, a high resolution is only needed for
small or far away objects. In addition to being smaller, such objects are also closer to the horizon.
Thus only regions near the horizon need to be scanned at high resolution, while the rest of the
image can be scanning using a relatively wide spaced grid.

When calculating the percepts, the robot’s pose, i. e. its body tilt and head rotation at the time
the image was acquired, is taken into account.

3.2.1 Using a Horizon-Aligned Grid

Calculation of the Horizon. First the position of the horizon in the image is calculated. The
robot’s lens projects the object from the real world onto the CCD chip. This process can be
described as a projection onto a virtual projection plane arranged perpendicular to the optical
axis with the center of projectionC at the focal point of the lens. As all objects at eye level lie at
the horizon, the horizon line in the image is the line of intersection between the projection plane
P and a planeH parallel to the ground at height of the camera (cf. Fig.3.2). The position of the
horizon in the image only depends on the rotation of the camera and not on the position of the
camera on the field or the camera’s height.

For each image the rotation of the robot’s camera relative to its body is stored in a rotation
matrix. Such a matrix describes how to convert a given vector from the robot’s system of coor-
dinates to the one of the camera. Both systems of coordinates share their origin at the center of
projectionC. The system of coordinates of the robot is described by thex-axis pointing parallel
to the ground forward, they-axis pointing parallel to the ground to the left, and thez-axis point-
ing perpendicular to the ground upward. The system of coordinates of the camera is described
by thex-axis pointing along the optical axis of the lens outward, they-axis pointing parallel to
the horizontal scan lines of the image, and thez-axis pointing parallel to the vertical edges of the
image.

To calculate the position of the horizon in the image, it is sufficient to calculate the coordi-
nates of the intersection pointshl andhr of the horizon and the left and the right edges of the

3.2. VISION 21

C

P

H

h

h

l

r

Figure 3.2: Construction of the horizon

image in the system of coordinates of the camera. Lets be the half of the horizontal resolution
of the image,α be the half of the horizontal opening angle of the camera. Then

hl =

 s
tan α

s
zl

 , hr =

 s
tan α

−s
zr

 (3.1)

with only zl andzr unknown. Let

i =

x
y
0

 (3.2)

be the coordinates ofhl in the system of coordinates of the robot. Solving the equation that
describes the transformation between the two systems of coordinates

R · i = hl (3.3)

with the rotation matrix

R =

r11r12r13

r21r22r23

r31r32r33

 (3.4)

leads to
zl = −r32s + r31s · cot α

r33

. (3.5)

In the same way follows

zr = −−r32s + r31s · cot α

r33

. (3.6)

Grid Construction and Scanning. The grid is constructed based on the horizon line, to which
grid lines are perpendicular and in parallel. The area near the horizon has a high density of grid
lines, whereas the grid lines are coarser in the rest of the image (cf. Fig.3.3b).

22 CHAPTER 3. MODULES IN GT2003

Each grid line is scanned pixel by pixel from top to bottom. During the scan each pixel is
classified by color. A characteristic series of colors or a pattern of colors is an indication of an
object of interest, e. g., a sequence of some orange pixels is an indication of a ball; a sequence or
an interrupted sequence of pink pixels followed by a green, sky-blue, yellow, or white pixel is an
indication of a flag; an (interrupted) sequence of sky-blue or yellow pixels followed by a green
pixel is an indication of a goal, a sequence of white to green or green to white is an indication of
an edge between the field and the border or a field line, and a sequence of red or blue pixels is an
indication of a player. All this scanning is done using a kind of state machine; mostly counting
the number of pixels of a certain color class and the number of pixels since a certain color class
was detected last. That way, beginning and end of certain object types can still be determined
although some pixels of the wrong class are detected in between.

3.2.2 Detecting Points on Edges

As a first step toward a more color table independent classification, points on edges are only
searched at pixels with a big difference of the y-channel of the adjacent pixels. An increase in
the y-channel followed by a decrease is an indication of an edge. If the color above the decrease
in the y-channel is sky-blue or yellow, the pixel lies on an edge between a goal and the field.
The differentiation between a field line and the border is a bit more complicated. In most of the
cases the border has a bigger size in the image than a field line. But a far distant border might be
smaller than a very close field line. For that reason the pixel where the decrease in the y-channel
was found is assumed to lie on the ground. With the known height and rotation of the camera
the distance to that point is calculated. The distance leads to expected sizes of the border and the
field line in the image. For the classification these sizes are compared to the distance between the
increase and the decrease of the y-channel in the image. The projection of the pixels on the field
plane is also used to determine their relative position to the robot.

All vertical scan lines are searched for edges between the goals and the field, because these
objects are small and often occluded by robots. In contrast, only every fourth vertical scan line is
searched for edge points on the border or on the field lines, but also a few horizontal scan lines
are searched for these edge types, because they can appear in vertical direction in the image. As
the scanning algorithm assumes to find the border before the field, which is not always true for
horizontal scanning, the horizontal scan lines are scanned either from left to right or from right
to left by random. If less then three points of a certain edge type are detected in the image, these
points are ignored to reduce noise. If many more points on field lines than on the border are
detected, the points on the border are dropped, because they are assumed to be misclassified1.

3.2.3 Detecting the Ball

For balls, upper and lower points on their boundaries are detected during scanning. Points on
the border of the image are ignored. During scanning, red pixels below a reasonable number

1If a scan line crosses a field line nearly in parallel, the white of the field line appears to be very long on the scan
line, which erroneously is an indication for a border.

3.2. VISION 23

a) b) c)

Figure 3.3: Percepts. a) An image and the recognized objects. Dots: pixels on a field line or a border, Flag:
pink above yellow, Goal: One edge inside the image and three edges that intersect with the image border.
Green lines: obstacles percept. b) The used scan lines. c) Recognition of the flag. Only the gray pixels
have beentouchedby the flag specialist. The green pixels mark the edges recognized.

of orange pixels are also treated as orange pixels, because shaded orange often appears as red.
Although only a single ball exists in the game, the points are clustered before the actual ball
position is detected, because some of them may be outliers on the tricot of a red robot. To remove
outliers in vertical direction, upper points are ignored if they are below many other lower points
in the same cluster, and lower points are ignored if they are above many other upper points in the
same cluster.

The actual calculation of the position of the ball depends on the number of points detected:

• If at least three points have been detected, these can be used to calculate the center of the
ball by intersecting the middle perpendiculars. So, three points are selected to construct two
middle perpendiculars. Points that are close to green are preferred, because it is assumed
that they are actually located on the border of the ball. In contrast, points close to white
can result from a high spot on the ball, but also from the real border of a ball in front
of the border of the field. First, two point are selected that have the largest distance from
each other. Then a third point is chosen that is furthest away from the two other points.
If the three points do not lie on a straight line, the center of ball in the image can be
calculated, even if the ball is only partially visible. If the ball is not below the horizon or if
the camera matrix is not valid because the robot is currently kicking, the distance to the ball
is determined from its radius. Otherwise, the distance is determined from the intersection
of the ray that starts in the camera and points to the center of the ball with a plane that is
parallel to the field, but on the height of the ball center.

• If there is at least a single point on the border of the ball, it is assumed to either be the
highest or the lowest point of the ball. The point is projected to the field plane and the
distance to the ball is determined from this projection.

• If all orange points lie on the border of the image, it is assumed that the ball fills the whole
image and the middle between all orange border points is assumed to be center of the ball.

24 CHAPTER 3. MODULES IN GT2003

The position on the field is again determined by intersecting the view ray with the field
plane in the height of the ball center.

Finally, the position of the ball in field coordinates is projected back into the image, and a
disk around this position is sampled for orange pixels. If enough orange pixels are found, the ball
is assumed to be valid.

3.2.4 Detecting Flags

All indications for flags found during scanning the grid are clustered. In each cluster there can
actually be indications for different flags, but only if one flag got more indications than the oth-
ers, it is actually used2. The center of a cluster is used as a starting point for theflag specialist. It
measures the height and the width of a flag. From the initialization pixel the image is scanned for
the border of the flag to the top, right, down, and left where top/down means perpendicular to the
horizon and left/right means parallel to the horizon (cf. Fig.3.3c). This leads to a first approxima-
tion of the size of the flag. Two more horizontal lines are scanned in the pink part and if the flag
has a yellow or a sky-blue part, two more horizontal lines are also scanned there. The width of
the green part of the pink/green flags is not used, because it is not always possible to distinguish
it from the background. To determine the height of the flag, three additional vertical lines are
scanned. The leftmost, rightmost, topmost, and lowest points found by these scans determine the
size of the flag. The angles to the four edges of the flag are written into thePerceptCollection.

To find the border of a flag, the flag specialist searches the last pixel having one of the colors
of the current flag. Smaller gaps with no color are accepted. This requires the color table to be
very accurate for pink, yellow, and sky-blue.

3.2.5 Detecting Goals

A goal specialistmeasures the height and the width of a goal. The image is scanned for the
borders of the goal from the left to the right and from the top bottom, where again top/down
means perpendicular to the horizon and left/right parallel to the horizon.

To find the border of the goal the specialist searches the last pixel having the color of the goal.
Smaller gaps with unclassified color are accepted. The maximal size in each direction determines
the size of the goal. The angles to the four edges of the goal and the information whether the end
of the goal is outside the image are written to thePerceptCollection.

3.2.6 Detecting Robots

To determine the indications for other robots, the scan lines are searched for the colors of the
tricots of the robots. If a reasonably number of pixels with such a color is found on a scan line, it
is distinguished between two cases:

2The borders of green flags sometimes appear in sky-blue, and vice versa. The clustering removes such outliers.

3.2. VISION 25

a) b) c)

Figure 3.4: Recognition of other robots. a) Several foot points for a single robot are clustered (shown in
red and blue). b) Distant robots are still recognized. c) Close robots are recognized based on the upper
border of their tricot (shown in pink).

• If the number of pixels in tricot color found on a scan line is above a certain threshold, it
is assumed that the other robot is close. In that case, the upper border of its tricot (ignoring
the head) is used to determine the distance to that robot (cf. Fig.3.4c). As with many other
percepts, this is achieved by intersecting the view ray through this pixel with a plane that is
parallel to the field, but on the “typical” height of a robot tricot. As the other robot is close,
a misjudgment of the “typical” tricot height does not change the result of the distance
calculation very much. As a result, the distance to close robots can be determined.

• If the number of pixels in tricot color found is smaller, it is assumed that the other robot is
further away. In that case, the scan lines are followed until the green of the field appears
(cf. Fig.3.4a, b). Thus thefoot pointsof the robot are detected. From these foot points, the
distance to the robot can be determined by intersecting the view ray with the field plane.
As not all foot points will actually be below the robot’s feet (some will be below the body),
they are clustered and the smallest distance is used.

3.2.7 Detecting Obstacles

While the scan lines are scanned from top to bottom, a state machine determines the last begin of
a green section. If this green section meets the bottom of the image, the begin and the end points
of the section are transformed to coordinates relative to the robot and written to the obstacles
percept; else or if there is no green on that scan line, the point at the bottom of the line is
transformed and the near and the far point of the percept are identical. Inside a green segment,
an interruption of the green that has the size of4 · widthfieldline is accepted to assure that field
lines are not misinterpreted as obstacles (widthfieldline is the expected width of a field line in the
image depending on the camera rotation and the position in the image).

26 CHAPTER 3. MODULES IN GT2003

3.3 Self-Localization

In 2002, the GermanTeam implemented three different methods to solve the problem of self-
localization: thesingle landmark self-locatorthat is based on the approach used by the team
from UNSW in 2000, theMonte-Carlo self-locatorthat uses the well known technique of the
same name to localize employing the beacons and the goals, and thelines self-locator, i. e. a
first approach to localization using edges between different objects on the field. Until the Ger-
man Open 2003, the lines self-locator was completed to work in actual RoboCup games. It was
used by the Bremen Byters and for the goalie of the Aibo Team Humboldt. After the German
Open, the GT2003 self-locator was created, a combination of the Monte-Carlo self-locator and
the lines self-locator. It was able to use both landmarks and edges for localization. After that, the
GT2003 self-locator was also combined with the single landmark self-locator to generate candi-
date postures, resulting in the Fusion2003 self-locator. The combination allowed the number of
samples required by the Monte-Carlo localization to be reduced to only 30, i. e. the Fusion2003
self-locator integrates the advantages of all three methods for self-localization developed by the
GermanTeam into a single module.

This section will first present the single landmark self-locator developed in 2002, and then
the two Monte-Carlo-based approaches, which only differ in the observation model used.

3.3.1 Single Landmark Self-Locator

For the RoboCup 2001 in Seattle, the GermanTeam implemented a Monte-Carlo localization
method. The approach proved to be of high accuracy in computing the position of the robot on
the field. Sadly this accuracy is achieved by using a quite high amount of CPU-time because the
position of the robot is modeled as distribution of particles, and numerous operations have to be
performed for each particle (cf. Sect.3.3.2). Therefore, the Darmstadt Dribbling Dackels tried to
develop a localization method that is a lot faster.

3.3.1.1 Approach

To calculate the exact position of the robot on the field one needs at least two very accurate
pairs of angle and distance to different landmarks. If more measurements are available, their
accuracy can also be lower. However due to the limitations of the hardware, in most situations
it is not possible to obtain such measurements with the necessary accuracy or frequency while
maintaining the attention on the game. Normally, a single image from the robot’s camera contains
only usable measurements of at most two landmarks.

Inspired by the approach of UNSW from 2000, a method for self-localization was developed
that uses only the two landmarks recognized best within a single image, and only if they are at
least measured with a certain minimum quality. In addition to the approach of UNSW, the quality
of the measurements is incorporated in the calculation process.

The single landmark self-locator uses information on flags, goals, and odometry to determine
the location of the robot. The latter comprises the robot’s position, its orientation on the field,
and the reliability of the localization. The information on flags and goals consists of the distance

3.3. SELF-LOCALIZATION 27

a) b)

n
o d

c

real position

virtual position

old position

new position

landmark

landmark

0°

old orientation

new orientation
a

b
d

g virtual orientation

j

o distance from old estimated position to
landmark

n measured distance to landmark
d difference betweeno andn
c d multiplied by thedistanceCorrectionFactor

α old orientation
β angle between straight line from

landmark to current position andx-axis
γ measured angle to landmark
δ difference between old and virtual

orientation
ϕ new orientation

Figure 3.5: One iteration of the single landmark self-locator. a) Position update. b) Orientation update.

of the landmark, the reliability of the distance measurement, the bearing of the landmark, and the
reliability of that bearing.

Basic Functionality. The self-localization is performed in an iterative process. For each new
set of percepts, the previous pair of position and orientation is updated by the odometry data
and their reliability values are decreased. If available, the two best landmark percepts and a goal
percept are selected. They will be separately used to compute the new position.

In the following, the algorithm will be described by showing how the estimation of the posi-
tion is improved with a single landmark measurement. At first the new position is estimated and
then the orientation of the robot. The newly measured distance to a landmark is used to compute
a virtual position. It is set on the straight line from the last estimated position to the landmark
at the measured distance from that landmark. According to the relation between the reliability
of the last position and the quality of the measurement, i. e. thedistanceCorrectionFactor, the
new position is interpolated between the last position and the virtual position (cf. Fig.3.5a).

28 CHAPTER 3. MODULES IN GT2003

The reliability of the new position depends on the quality of the measured distance. The rela-
tive orientation to the landmark is computed in a similar fashion (cf. Fig.3.5b). The orientation
is interpolated between the old orientation and the newly measured orientation relative to the
landmark. The interpolation utilizes the quality of the measured angle and the reliability of the
last orientation. The reliability of the new orientation depends on the reliability of the measured
angle.

Basically the goal is treated as a landmark with its position at the center of the goal line. Since
measurements of distances to goals are usually very imprecise, these measurements have a very
low quality and therefore play a minor role in the correction of the estimated position. On the
other hand the angle to the goal is considered to be of a good quality and of a great importance.
The orientation of the robot relative to the goal is among the most important information in
RoboCup, and therefore the goal is taken into account after the landmarks. Thus possible false
orientations obtained from the landmarks are overruled by the perception of the goal.

At the end of each cycle the computed position, orientation, and reliability values are stored
for the next iteration, and the localization data is provided to other modules. This data includes
the reliability that is calculated as the product of the reliabilities of orientation and position.

Expected Behavior. The algorithm described cannot compute an exact position and even
makes quite huge errors when the robot sees only the same landmark over a certain period of
time. As a matter of fact in such a situation the position can only be corrected along the straight
line from the landmark to the old position (cf. Fig.3.6a). On the other hand, such situations
are rare and if the robot can see different landmarks in a series of images, the position will be
corrected along changing straight lines, and it will settle down to an fair estimation of the true
position (cf. Fig.3.6b).

Optimization. To enhance the stability of the localization the parameterprogressivenesswas
introduced. It controls the rate by which the estimated position approaches the virtual position.
Depending on the value of this parameter the algorithm stalls (zero) or keeps working as before
(one). A compromise has to be found between stability and the ability to adapt to changing
positions very quickly. With values between0.10 and0.15 the localization was more stable and
according to the speed of the robot it converged near the true position or was slightly behind if the
robot was very fast. The results were further improved by changing the method of decrementing
the reliability of the old position at the beginning of each cycle. It now depends on how far the
robot walked according to the odometry data. Thus the reliability of the old position is lower if
the robot walked farther and keeps higher if it stands still.

A reliability that is directly determined from the reliabilities of the input data is not really
useful to judge the quality of the current estimate of the robot’s position. Therefore, the reliability
of a new position and a new orientation integrates the difference between the old values and the
virtual values for position and orientation. Thus the reliability decreases if there is a big difference
between these values. Thus a single set of unfitting data will not significantly diminish the trust
in the localization but continuing conflicting measurements lead to a dropping reliability value
and thereby a faster re-localization. If the robot detects continuously inconsistent landmarks or

3.3. SELF-LOCALIZATION 29

a) b)

real position

end position

start position

landmark

1

2

3
4

5

real position

starting position

landmark 1

landmark 2

1

2

3

4

5

6

Figure 3.6: a) Problematic situation. The position can only be updated along the straight line to the seen
landmark. b) Normal situation. Different landmarks are seen interchangingly and the estimated position
settles down near the real position.

no landmarks at all, the reliability value will drop and remain low. Thus, the behavior control
can perform the actions required to improve the localization, e. g., to let the head search for
landmarks.

3.3.1.2 Results

At the RoboCup German Open 2002 in Paderborn theDarmstadt Dribbling Dackelsused the
single landmark self-locator in all games, while the teams from the other universities in the
GermanTeam used the Monte-Carlo self-locator (cf. Sect.3.3.2). The robots of theDarmstadt
Dribbling Dackelsseemed always to be well-localized on the field. In 2003, the single land-
mark self-locator was combined with the Monte-Carlo self-locator, using the single landmark
self-locator for sensor resetting (Fusion self-locator). This allowed the number of samples in the
Monte-Carlo approach to be reduced to 30. At the German Open 2003, Fusion self-locator was
used by the goalie and single landmark self-locator was used by the field players. Again, local-
ization worked quite well, and in fact, theDarmstadt Dribbling Dackelsactually won both the
German Open 2002 and 2003.

30 CHAPTER 3. MODULES IN GT2003

3.3.2 Monte-Carlo Self-Locator

The Monte-Carlo Self-Locatorimplements a Markov-localization method employing the so-
called Monte-Carlo approach [7]. It is a probabilistic approach, in which the current location
of the robot is modeled as the density of a set of particles (cf. Fig.3.8a). Each particle can be
seen as the hypothesis of the robot being located at this posture. Therefore, such particles mainly
consist of a robot pose, i. e. a vector representing the robot’sx/y-coordinates in millimeters and
its rotationθ in radians:

pose =

 x
y
θ

 (3.7)

A Markov-localization method requires both an observation model and a motion model. The
observation model describes the probability for taking certain measurements at certain locations.
The motion model expresses the probability for certain actions to move the robot to certain
relative postures.

The localization approach works as follows: first, all particles are moved according to the
motion model of the previous action of the robot. Then, the probabilities for all particles are
determined on the basis of the observation model for the current sensor readings, i. e. bearings on
landmarks calculated from the actual camera image. Based on these probabilities, the so-called
resamplingis performed, i. e. moving more particles to the locations of samples with a high
probability. Afterwards, the average of the probability distribution is determined, representing
the best estimation of the current robot pose. Finally, the process repeats from the beginning.

3.3.2.1 Motion Model

The motion model determines the odometry offset∆odometry since the last localization from the
odometry value delivered by the motion module (cf. Sect.3.9) to represent the effects of the
actions on the robot’s pose. In addition, a random error∆error is assumed, according to the
following definition:

∆error =

 0.1d× random(−1 . . . 1)
0.02d× random(−1 . . . 1)

(0.002d + 0.2α)× random(−1 . . . 1)

 (3.8)

In equation (3.8), d is the length of the odometry offset, i. e. the distance the robot walked,α is
the angle the robot turned.

For each sample, the new pose is determined as

posenew = poseold + ∆odometry + ∆error (3.9)

Note that the operation+ involves coordinate transformations based on the rotational compo-
nents of the poses.

3.3. SELF-LOCALIZATION 31

bearingflag

bearingleft
rflag

distanceflag

Figure 3.7: Calculating the angle to an edge of a flag.

3.3.2.2 Observation Model

The observation model relates real sensor measurements to measurements as they would be taken
if the robot were at a certain location. Instead of using the distances and directions to the land-
marks in the environment, i. e. the flags and the goals, this localization approach only uses the
directions to the vertical edges of the landmarks. The advantage of using the edges for orientation
is that one can still use the visible edge of a landmark that is partially hidden by the image border.
Therefore, more points of reference can be used per image, which can potentially improve the
self-localization.

As the utilized percepts delivered by the flag/goal specialist (cf. Sect.3.2.4and3.2.5) are
bearings on the edges of flags and goals, these have to be related to the assumed bearings from
hypothetical postures. To determine the expected bearings, the camera position has to be deter-
mined for each particle first, because the real measurements are not taken from the robot’s body
posture, but from the location of the camera. Note that this is only required for the translational
components of the camera pose, because the rotational components were already normalized
during earlier processing steps. From these hypothetical camera locations, the bearings on the
edges are calculated. It must be distinguished between the edges of flags and the edges of goals:

Flags. The calculation of the bearing on the center of a flag is straightforward. However, to
determine the angle to the left or right edge, the bearing on the centerbearingflag, the distance
between the assumed camera pose and the center of the flagdistanceflag, and the radius of the
flag rflag are required (cf. Fig.3.7):

bearingleft/right = bearingflag ± arcsin(rflag/distanceflag) (3.10)

Goals. The front posts of the goals are used as points of reference. As the goals are colored on
the inside, but white on the outside, the left and right edges of a color blob representing a goal
even correlate to the posts if the goal is seen from the outside.

Probabilities. The observation model only takes into account the bearings on the edges that
are actually seen, i. e., it is ignored if the robot hasnot seen a certain edge that it should have
seen according to its hypothetical posture and the camera pose. Therefore, the probabilities of
the particles are only calculated from the similarities of the measured angles to the expected
angles. Each similaritys is determined from the measured angleωmeasured and the expected

32 CHAPTER 3. MODULES IN GT2003

angleωexpected for a certain pose by applying a sigmoid function to the difference of both angles:

s(ωmeasured, ωexpected) =

{
e−50d2

if d < 1

e−50(2−d)2 otherwise

whered =
|ωmeasured−ωexpected|

π

(3.11)

The probabilityp of a certain particle is the product of these similarities:

p =
∏

ωmeasured

s(ωmeasured, ωexpected) (3.12)

3.3.2.3 Resampling

In the resampling step, the samples are moved according to their probabilities. There is a trade-off
between quickly reacting to unmodeled movements, e. g., when the referee displaces the robot,
and stability against misreadings, resulting either from image processing problems or from the
bad synchronization between receiving an image and the corresponding joint angles of the head.
Therefore, resampling must be performed carefully. One possibility would be to move only a
few samples, but this would require a large number of particles to always have a sufficiently
large population of samples at the current posture of the robot. The better solution is to limit
the change of the probability of each sample to a certain maximum. Thus misreadings will not
immediately affect the probability distribution. Instead, several readings are required to lower
the probability, resulting in a higher stability of the distribution. However, if the posture of the
robot was changed externally, the measurements will constantly be inconsistent with the current
distribution of the samples, and therefore the probabilities will fall rapidly, and resampling will
take place.

The filtered probabilityp′ is calculated as

p′new =

p′old + 0.1 if p > p′old + 0.1
p′old − 0.05 if p < p′old − 0.05
p otherwise.

(3.13)

Resampling is done in three steps:

Importance Resampling. First, the samples are copied from the old distribution to a new
distribution. Their frequency in the new distribution depends on the probabilityp′i of each sample,
so more probable samples are copied more often than less probable ones, and improbable samples
are removed.

Drawing from Observations. In a second step, some samples are replaced by so-called candi-
date postures. This approach follows thesensor resettingidea of Lenser and Veloso [11], and it
can be seen as the small-scale version of the Mixture MCL by Thrunet al. [18]: on the RoboCup
field, it is often possible to directly determine the posture of the robot from sensor measure-
ments, i. e. the percepts. The only problem is that these postures are not always correct, because

3.3. SELF-LOCALIZATION 33

of misreadings and noise. However, if a calculated posture is inserted into the distribution and it
is correct, it will get high probabilities during the next observation steps and the distribution will
cluster around that posture. In contrast, if it is wrong, it will get low probabilities and will be re-
moved very soon. Therefore, calculated postures are only hypotheses, but they have the potential
to speed up the localization of the robot.

Two methods were implemented to calculate possible robot postures. They are used to fill a
buffer ofposition templates:

1. The first one uses a short term memory for the bearings on the last three flags seen. Esti-
mated distances to these landmarks and odometry are used to update the bearings on these
memorized flags when the robot moves. Bearings on goal posts are not inserted into the
buffer, because their distance information is not reliable enough to be used to compensate
for the motion of the robot. However, the calculation of the current posture also integrates
the goal posts, but only the ones actually seen. So from the buffer and the bearings on goal
posts, all combinations of three bearings are used to determine robot postures by triangu-
lation.

2. The second method only employs the current percepts. It uses all combinations of a land-
mark with reliable distance information, i. e. a flag, and a bearing on a goal post or a flag
to determine the current posture. For each combination, one or two possible postures can
be calculated.

The samples in the distribution are replaced by postures from the template buffer with a
probability of1− p′i. Each template is only inserted once into the distribution. If more templates
are required than have been calculated, random samples are employed.

Probabilistic Search. In a third step that is in fact part of the next motion update, the particles
are moved locally according to their probability. The more probable a sample is, the less it is
moved. This can be seen as a probabilistic random search for the best position, because the
samples that are randomly moved closer to the real position of the robot will be rewarded by
better probabilities during the next observation update steps, and they will therefore be more
frequent in future distributions.

The samples are moved according to the following equation:

posenew = poseold +

 100(1− p′)× random(−1 . . . 1)
100(1− p′)× random(−1 . . . 1)
0.5(1− p′)× random(−1 . . . 1)

 (3.14)

3.3.2.4 Estimating the Pose of the Robot

The pose of the robot is calculated from the sample distribution in two steps: first, the largest clus-
ter is determined, and then the current pose is calculated as the average of all samples belonging
to that cluster.

34 CHAPTER 3. MODULES IN GT2003

a) b)

c) d)

e) f)

Figure 3.8: Distribution of the samples during the Monte-Carlo localization while turning the head. The
bright robot body marks the real position of the robot, the darker body marks the estimated location. a)
After the first image processed (40 ms). b) After eight images processed (320 ms). c) After 14 images
(560 ms). d) After 40 images (1600 ms). e) Robot manually moved to another position. f) 13 images
(520 ms) later.

Finding the Largest Cluster. To calculate the largest cluster, all samples are assigned to a grid
that discretizes thex-, y-, andθ-space into10×10×10 cells. Then, it is searched for the2×2×2
sub-cube that contains the maximum number of samples.

Calculating the Average. All m samples belonging to that sub-cube are used to estimate the
current pose of the robot. Whereas the meanx- andy-components can directly be determined,
averaging the angles is not straightforward, because of their circularity. Instead, the mean angle

3.3. SELF-LOCALIZATION 35

θrobot is calculated as:
θrobot = atan2(

∑
i

sin θi,
∑

i

cos θi) (3.15)

Certainty. The certaintyc of the position estimate is determined by multiplying the ratio be-
tween the number of the samples in the winning sub-cubem and the overall number of samples
n by the average probability in the winning sub-cube:

c =
m

n
· 1

m

∑
i

p′i =
1

n

∑
i

p′i (3.16)

This value is interpreted by other modules to determine the appropriate behavior, e. g., to look at
landmarks to improve the certainty of the position estimate.

3.3.2.5 Results

Figure3.8 depicts some examples for the performance of the approach using 100 samples. The
experiments shown were conducted with SimGT2003 (cf. Sect.5.1) using thesimulation time
mode, i. e. each image taken by the simulated camera is processed. The results show how fast
the approach is able to localize and re-localize the robot. At the competitions in Fukuoka and
Padova, the method also proved to work on real robots. The GermanTeam was the only team that
supported all features of the RoboCup Game Manager that allows the referee to give instructions
to the robots. This includes automatic positioning on the field, e. g. for kickoff. For instance,
the robots of the GermanTeam were just started somewhere on the field, and then—while still
many people were working on the field—they autonomously walked to their initial positions. In
addition, the self-localization worked very well on fields without an outer barrier, e. g. on the
practice field.

3.3.3 Lines Self-Locator

The previous two approaches use the colored beacons and the goals for self-localization. How-
ever, there are no beacons on a real soccer field, and as it is the goal of the RoboCup initiative
to compete with the human world champion in 2050, it seems to be a natural thing to develop
techniques for self-localization that do not depend on artificial clues. Therefore, the German-
Team already started in 2002 working on a method to use the field lines to determine the robot’s
location on the field [15]. It was finished for the German Open 2003, and it was used there by
the Bremen Byters and the goalie of the Aibo Team Humboldt [16]. In Padova, it was employed
in the localization challenge, and it was used as part of the Fusion2003 self-locator in the soccer
competition.

The approach only differs in two aspects from the landmark-based Monte-Carlo self-locator:
in the observation model used, and in the way, how candidate postures are drawn from observa-
tions (sensor-resetting).

36 CHAPTER 3. MODULES IN GT2003

3.3.3.1 Observation Model

The localization is based on the points on edges determined by the image-processing system
(cf. Sect.3.2). Each pixel has an edge type (field, border, yellow goal, or blue goal), and by
projecting it on the field, a relative offset from the body center of the robot is determined. Note
that the calculation of the offsets is prone to errors because the pose of the camera cannot be
determined precisely. In fact, the farther away a point is, the less precise the distance can be
determined. However, the precision of the direction to a certain point is not dependent on the
distance of that point.

Information Provided by Edge Points. The four edge types provide very different informa-
tion: The field linesare mostly oriented across the field. As lines only provide localization infor-
mation perpendicular to their orientation, the field lines can only help the robot to find its position
along the field. The field lines are seen less often than the border.The borderis surrounding the
field. Therefore it provides information in both Cartesian directions, but it is often quite far away
from the robot. Therefore, the distance information is less precise than the one provided by the
field lines. The border is seen from nearly any location on the field.Goalsare the only means to
determine the orientation on the field, because the field lines and the border are mirror symmetric.
The goals are seen only rarely.

If the probability distribution for the pose of the robot had been modeled by a large set
of particles, the fact that different edges provide different information and that they are seen in
different frequency would not be a problem. However, to reach real-time performance on an Aibo
robot, only a small set of samples can be employed to approximate the probability distribution.
In such a small set, the samples sometimes behave more like individuals than as a part of joint
distribution. To clarify this issue, let us assume the following situation: as the field is mirror
symmetric, only the recognition of the goals can determine the correct orientation on the field.
Many samples will be located at the actual location of the robot, but several others are placed at
the mirror symmetric variant, because only the recognition of the goals can discriminate between
the two possibilities. For a longer period of time, no goal is detected, but the border and the field
lines are seen. Under these conditions, it is possible that the samples on the wrong side of the
field better match the measurements of the border and the field lines than the correctly located
ones, resulting in a higher probability for the wrong position. So the estimated pose of the robot
will flip from one orientation alternative to the other without ever seeing a goal. This is not the
desired behavior, and it would be quite risky in actual soccer games.

To avoid this problem, separate probabilities for field lines, borders, and goals are maintained
for each particle.

Closest Model Points. The projections of the pixels are used to determine the three probabili-
ties of each sample in the Monte-Carlo distribution. As the positions of the samples on the field
are known, it can be determined for each measurement and each sample, where the measured
points would be located on the field if the position of the sample was correct. For each of these
measured points in field coordinates, it can be calculated, where the closest point on a real field
line of the corresponding type is located. Then, the horizontal and vertical angles from the camera

3.3. SELF-LOCALIZATION 37

a) b)

c) d)

Figure 3.9: Distances from edges. Distance is visualized as thickness of dots. a) Field lines. b) Border. c)
One goal. d) The other goal.

to this model point are determined. These two angles of the model point are compared to the two
angles of the measured point. The smaller the deviations between the model point and the mea-
sured point from a hypothetic position are, the more probable the robot is really located at that
position. Deviations in the vertical angle (i. e. distance) are judged less rigidly than deviations in
the horizontal angle (i. e. direction).

Calculating the closest point on an edge in the field model for a small number of measured
points is still an expensive operation if it has to be performed for, e. g., 100 samples. Therefore,
the model points are pre-calculated for each edge type and stored in two-dimensional lookup
tables with a resolution of 2.5 cm. That way, the closest point on an edge of the corresponding
type can be determined by a simple table lookup. Figure3.9visualizes the distances of measured
points to the closest model point for the four different edge types.

Probabilities. The observation model only takes the bearings on the edges into account that
are actually seen, i. e., it is ignored whether the robot hasnot seen a certain edge that it should
have seen according to its hypothetical position and the camera pose. Therefore, the probabilities
of the particles are only calculated from the similarities of the measured angles to the expected
angles. Each similaritys is determined from the measured angleωseen and the expected angle

38 CHAPTER 3. MODULES IN GT2003

ωexp for a certain pose by applying a sigmoid function to the difference of both angles weighted
by a constantσ:

s(ωseen, ωexp, σ) = e−σ(ωseen−ωexp)2 (3.17)

If αseen andαexp are vertical angles andβseen andβexp are horizontal angles, the overall similarity
of a sample for a certain edge type is calculated as:

q = s(αseen, βseen, αexp, βexp) = s(αseen, αexp, 10− 9
|v|
200

) · s(βseen, βexp, 100) (3.18)

For the similarity of the vertical angles, the probability depends on the robot’s speedv (in mm/s),
because the faster the robot walks, the more its head shakes, and the less precise the measured
angles are.

Calculating the probability for all points on edges found and for all samples in the Monte-
Carlo distribution would be a costly operation. Therefore, only a single point of each edge type
(if detected) is selected per image by random. To achieve stability against misreadings, resulting
either from image processing problems or from the bad synchronization between receiving an
image and the corresponding joint angles of the head, the change of the probability of each sam-
ple for each edge type is limited to a certain maximum. Thus misreadings will not immediately
affect the probability distribution. Instead, several readings are required to lower the probabil-
ity, resulting in a higher stability of the distribution. However, if the position of the robot was
changed externally, the measurements will constantly be inconsistent with the current distribu-
tion of the samples, and therefore the probabilities will fall rapidly, and resampling will take
place.

The filtered probabilityq′ for a certain edge type is updated (q′old → q′new) for each point of
that type:

q′new =

q′old + 0.01 if q > q′old + 0.01
q′old − 0.005 if q < q′old − 0.005
q otherwise.

(3.19)

The probabilityp of a certain particle is the product of the three separate probabilities for edges
of field lines, the border, and goals:

p = q′field lines · q′border · q′goals (3.20)

3.3.3.2 Drawing from Observations

So far, the observation of edge points has only been used to determine the probability of the robot
for being at a certain location. However, observations can also be used to generate candidate
positions for the localization, i. e. to place samples at certain positions on the field. As a single
observation cannot uniquely determine the location of the robot, candidate positions are drawn
from all locations from which a certain measurement could have been made. To realize this,
the robot is equipped with a table for each edge type that contains a large number of poses on
the field indexed by the distance to the edge of the corresponding type that would be measured
from that location in forward direction. Thus for each measurement, a candidate position can be

3.3. SELF-LOCALIZATION 39

drawn in constant time from a set of locations that would all provide similar measurements. As
all entries in the table only assume measurements in forward direction, the resulting poses have
to be rotated to compensate for the direction of the actual measurement.

Such candidate positions are used to replace samples with a low probability. Whether a sam-
ple j is replaced or not is also drawn, based on the probability of that sample in relation to the
average probability of all samples, i. e. if the following condition is satisfied:

rnd

n

n∑
i

pi > pj (3.21)

In this case,rnd provides a random number between 0 and 1. If a sample is replaced, the new
sample has probabilitiesq′ that are a little bit below the average. Therefore, they have to be
acknowledged by further measurements before they are seen as real candidates for the position
of the robot.

3.3.3.3 Correcting the Posture Based on Measurements

In contrast to the approach described in section3.3.2, the measurements used for edge-based
localization are distances, and the differences between measured distances and distances to model
points give a metric deviation of the robot’s posture. This can be used to correct the postures of
the samples perpendicularly to the closest edges in the model, accelerating the search of the
samples for the real posture of the robot. Of course, the adaptation has to be performed slowly,
because the readings are noisy, and this noise again depends on the speed of the robot.

3.3.3.4 Experiments

To judge the performance of the localization approach, two different experiments were con-
ducted. The first one measures the localization error when the robot is continuously moving. The
second one evaluates the precision in reaching certain goal points.

Experimental Setup. To be able to evaluate the precision of an approach for self-localization,
a reference method for localization is required. Gutmann and Fox [8] have analyzed different
localization approaches using the Aibo by manually controlling the robot around using a joystick,
and whenever it reached a position that was previously marked, they stored the position of that
marker and the position as calculated by the robot in a log file. They also stored all perceptions
of the robot, allowing them to test different localization approaches based on the same data.

The setup used for the experiments presented in this paper is a little bit different. To be able
to continuously track the position of the robot, a laser range finder was placed at the border of
the field. Within its opening angle of 180◦, it measured distances in a height of 35 cm, i. e. above
the goals. The robot used for the experiment was equipped with a paper tube on its back that
was high enough to be detected by the laser range finder (cf. Fig.3.10). This way, the position of
the robot could easily be determined by searching for an area that was significantly closer to the
laser scanner than the neighboring areas. The shortest distance within that area plus the radius

40 CHAPTER 3. MODULES IN GT2003

Figure 3.10: The experimental setup. The laser scanner is fixed to the border of the field. The robot carries
a vertical paper tube on its back that is measured by the laser sensor.

of the tube was used as distance to the robot. Together with the angle under which the robot was
measured, the exact location of the robot was determined.

In both experiments, the robot was continuously turning its head from left to right and vice
versa. The Monte-Carlo localization method used 100 samples.

Experiment 1. The goal of the first experiment was to judge the precision of the localization
approach when the robot is continuously moving. To accomplish this, the robot was randomly
moved around on the field with a maximum speed of 15 cm/s using a joystick. The positions of
the robot as calculated by the robot itself and as measured by the laser scanner were stored in a
file. The experiment took about 18 minutes, resulting in approximately 5300 measurements.

The result was an average error of 10.5 cm, i. e. less than 4% of the width of the soccer field
and less than 2.2% of its length. 60% of the measurements had an error less than this average.
Figure3.11a shows the path traveled and the errors made. Please note that this outcome is similar
to the results presented in [8], with the two exceptions that Gutmann and Fox used color marks
for localization, and that they performed their experiments on a small3m×2m field. In addition,
they worked on a log file, allowing them to optimally adjust the parameters of their algorithms,
e. g. the Monte-Carlo localization approach used needed only 30 samples.

Experiment 2. The goal of the second experiment was to evaluate the precision in reaching
certain goal points. In this experiment, random goal positions were given to the robot. The system
then performed the so-calledgo-to-pointskill to reach the specified location. When the robot did
not move anymore, the coordinates of the goal position, the position calculated by the robot, and
the position measured by the laser scanner were stored in a file. In the experiment, 68 positions
had to be reached.

There were two results: the average error between the goal position and the position reported
by the laser scanner was 9.4 cm. 66% of the goals were reached with smaller deviations. However,
the go-to-point skill does not reach the goal position precisely. It often stops one or two cm too

3.4. BALL MODELING 41

a) b)

Figure 3.11: Experimental results. Each line connects a position calculated by the robot with one deter-
mined by the laser scanner. a) First experiment. b) Second experiment.

early. Therefore, the average error between the position measured by the robot and the position
measured by the laser sensor is smaller, namely 8.4 cm. 60% of the goals were even reached with
a smaller error. Figure3.11b shows the 68 goal positions and the positions reached by the robot.

3.4 Ball Modeling

3.4.1 Ball Position and Ball Speed

It is of great importance for all players to keep track of the position of the ball even if they are not
able to see it from where they are. Therefore, a model of the ball is created including the ball’s
position and speed.

The ball’s position is derived geometrically from the “ball percept” taking into account the
robot’s pose. The ball speed was calculated from the current and the last ball position perceived.
Both values are smoothed to lessen the effect of noise using a floating average.

3.4.2 Communicated Information About the Ball

In addition to this information, meta data is stored that describes whether or not the robot actually
saw the ball or if the ball’s position was communicated to it by other robots. This distinction is
important because of two reasons:

• The way the robot moves its head: it performs a periodic left-right scanning motion, scan-
ning its surroundings for the ball, other players, and landmarks. Due to the small opening
angle of the robot’s camera, the ball cannot be seen by the robot during some intervals of
the scanning motion even if the robot is relatively close to the ball.

• The different errors of the ball measurements: while a robot is able to perceive where the
ball is with sufficient accuracy (ball position in coordinates relative to the robot), commu-
nicating the ball’s position from one robot to another requires the use of a global system of

42 CHAPTER 3. MODULES IN GT2003

coordinates. Since the robots are only localized within a certain accuracy, the localization
errors of both robots accumulate and deteriorate the quality of the information communi-
cated.

If the robot sees the ball (or hasrecentlydetected the ball in the camera image), this infor-
mation is used. If the robot was unable to see the ball for some time, the ball position is derived
from where other robots perceived the ball using the “team ball locator”. This means that three
different situations need to be differentiated:

Ball Was Seen. The ball was seen and detected in the camera image (e.g. when the robot is
directly looking at the ball). If the ball was perceived (i. e. the percept collection contains a ball
percept) the position of the ball is determined from the offset stored in the percept and the actual
position of the robot yielding a global position of the ball.

Ball Was Not Perceived for a Short Period of Time. This happens, e. g., if the position of the
ball makes it difficult to process the image and to detect the ball in some images but not in all.
This was also introduced to make the ball model more robust against errors in image processing.
When the robot is looking at the ball, image processing does not necessarily detect the ball in all
sequential images. This is due to motion blur, temporary obstruction of the ball and special cases
in which the image processing algorithm does not yield good results. To describe the situation
where the robot sees the ball most of the time (but not necessarily in every single image), a time
called “consecutive time ball seen” was introduced. Odometry is used to correct the ball position
in the cases, in which it is not seen.

Ball Was Not Seen for Some Time. This is the case when the ball is completely obscured from
where the robot is standing or the robot is simply looking the other way. If the ball was not seen
for some time (i.e. no ball percept was generated by image processing for a number of seconds),
the ball position communicated by other robots will be used.

3.5 Obstacle Model

In the obstacles model, a radar-like view of the surroundings of the robot is created. To achieve
this, the surroundings are divided into 90 (micro-) sectors. For each of the sectors the free distance
to the next obstacle is stored (see Fig.3.12). In addition to the distance, the actual measurement
that resulted in the distance is also stored (in x,y-coordinates relative to the robot). These are
called representatives. Each sector has one representative.

For most applications, the minimum distance in the direction of a single sector is not of
interest but rather the minimum value in a number of sectors. Usually, a sector of a certain width
is sought-after, e. g. to find a desirable direction free of obstacles for shooting the ball. Therefore,
the obstacle model features a number of analysis functions (implemented as member functions)
that address special needs for obstacle avoidance and ball handling. One of the most frequently
used functions calculates the free distance in a corridor of a given width in a given direction. This

3.5. OBSTACLE MODEL 43

Figure 3.12: The obstacle model as seen from above and projected into the camera image. The robot is in
front of the opponent goal.

can be used to check if there are any obstacles in the direction the robot is moving in and also if
there’s enough room for the robot to pass through.

3.5.1 Updating the Model with new Sensor Data

The robot performs a scanning motion with the camera. The sectors which are within opening an-
gle of the camera can be updated. Image processing can yield two points, the first corresponding
to the lower image boundary and the second corresponding to either the distance of an detected
obstacle or the upper boundary of the image (if now obstacle was detected). This is necessary be-
cause the image only gives information about a certain distance range (due to the vertical opening
angle, see fig.3.13).

Earlier versions of the obstacle model also used the PSD distance sensor of the robot. This
was not used in the competition because image processing yielded better, more detailed data.
However, most of what has been said can also be applied to the case when only the PSD is
used which is extremely useful in domains other then RoboCup where there may be little or no
knowledge about the surface available.

3.5.2 Updating the Model Using Odometry

The distances stored in the sectors are adjusted according to how the robot moves. To do this,
the representatives are translated and rotated by the robot odometry. The odometry corrected
representatives are then used to re-calculate the distances stored in the sectors.

This method has one drawback: it occurs frequently that after moving the representatives by
the odometry, two or more representatives are placed in one new sector. In this case, the one with
the smallest distance to the robot is used; the other, further away representatives are discarded.
This, however, results in the total number of representatives being smaller than the total number
of sectors, which results in sectors of unknown distance. This is acceptable for most applications

44 CHAPTER 3. MODULES IN GT2003

r s t u

obstacle

dobstacle

Figure 3.13: The above diagram depicts the robot looking at an obstacle. The robot detects some free
space in front of it (s) and some space that is obscured by the obstacle (t). The obstacle model is updated
according to the diagram (in this case the distance in the sector is set todobstacle unless the distance value
stored lies inr).

since usually a single sector is not of interest.

Obstacle avoidance based on the obstacle model described here was used in the RoboCup
competition in Padova for a number of applications. It did, however, prove to be difficult to make
good use of the information. One example to illustrate this is the case of two opposing robots
going for the ball: in this case, obstacle avoidance is not desirable and would cause the robot to
let the other one move forward. Many such situations are imaginable which resulted in a very
limited use of the model so far. Future work will investigate ways of using obstacle avoidance,
collision detection, and - ultimately - path planning in more thorough, extensive fashion.

See also section4.3 for how the model was used successfully for moving around static ob-
stacles swiftly in the obstacle avoidance challenge.

3.6 Collision Detector

A method for collision detection was implemented. Knowledge about whether or not a robot
is running into something can obviously be used to have the robot act accordingly. In addition,
collision detection can be employed to improve self-localization by adding a validity measure to
the odometry data.

Since the Aibo is not equipped with sensors to directly perceive the contact to obstacles,
ways of detecting collisions using the sensor readings from the servo motors of the robot’s legs
were investigated. It was found that under laboratory conditions, comparison of motor commands
and actual movement (as sensed by the servo’s position sensor)—after having compensated for
the phase shift between the two signals—yields good results, i.e. collisions and obstructions
are detected reliably. When the concept was applied to the RoboCup environment, it had to be
extended to cope with arbitrary movements and accelerations produced by the behavioral layers
of the agent.

3.6. COLLISION DETECTOR 45

Sensor and Actuator Data of a Collision with the Field Boundary
Walking Forward at 150 mm/s

-10000
-5000

0
5000

10000
15000
20000
25000
30000
35000

0 50 100 150 200 250 300 350 400

time in 1/125 s

Su
m

 o
f s

q.
 d

iff
s.

 in
 m

ra
d2

-1000
-500
0
500
1000
1500
2000
2500
3000
3500

an
gl

e
va

lu
e

in
 m

ra
d

SSD for last 12 frames
actor, FL1
sensor FL1, phase shift = 8 frames

 Figure 3.14: The graph shows the actuator and sensor curves and the sum of the squared differences (SSD).
Peaks in the SSD curve correspond to collisions.

In an ideal world, the actuator commands and the servo motor’s direction sensor readings
should be congruent. If this is the case, collisions can be detected by calculating the differences
between the two signals and comparing them against a threshold value (see fig.3.14).

In the actual implementation, two things had to be considered:

• In order to make the method robust against sensor noise, not only one pair of actua-
tor/sensor signals was compared but a sum over the last 12 squared differences (SSD)
was used.

• A phase shift of variable length between the signals was observed. This phase shift is due
to various reasons such as the amplitude of the signal, whether or not the robot’s feet are
touching the ground, and others. To compensate for this phase shift, the sum of squared
differences is being calculated for a range of possible phase shifts. The smallest value of
the set of SSDs was used for comparison against the threshold.

The threshold value depends on the speed of the robot. Threshold values are stored in a table
and need to be calibrated for a given gait.

Using this approach we were able to detect robot collisions under laboratory conditions, i. e.
if the robot was moving in a straight line or rotating at a given speed. If, however, the signals
were investigated in actual game situations, quick, abrupt changes in motor commands made it
impossible to detect collisions. The motor commands need to be filtered to differentiate those
signals that are caused by (external) collisions from those caused by extreme changes in the
motor commands.

A sample behavior was developed for the agent in which the robot would turn away from
obstacles when a collision was detected. First steps towards using obstacle avoidance were taken
but in the case of obstacle avoidance, finding an “appropriate” behavior once a collision is de-

46 CHAPTER 3. MODULES IN GT2003

tected is not a trivial task in a competitive environment. Future work will explore possibilities of
finding appropriate behaviors and using collision detection to improve localization.

3.7 Player Modeling

The knowledge of other robots positions is important for avoiding collisions and for tactical plan-
ning. The locator for other players performs the calculation of these positions based on players
percepts. In addition, positions of teammates received via the wireless network communication
are integrated.

3.7.1 Determining Robot Positions from Distributions

The positions of percepts of other robots are relative to the position of the observing robot.
In a first step, they are converted to absolute positions on the field. In a second step, it is tested,
whether the absolute positions of the percepts are outside the field. In this case, they are projected
to the border along an imaginary line which connects the robot with the absolute position of the
player percept. The resulting positions of the percepts are stored in a list for about two seconds.

The soccer field is discretized as a grid. The positions of the percepts are converted into grid
points, and distributions inx andy directions are created. Then, the maxima in these distributions
are determined. A maximum results from a high density of perceived robots at a certain location
in the grid. The maxima are sorted by their distinctiveness in descending order. If a maximum is
above a certain threshold, a robot is assumed to be located at the corresponding point. The point
in the grid is converted to an absolute position on the soccer field. Finally, this position is added
to thePlayersCollectionthat contains the positions of all players recognized.

The process described above is done separately for the opponents and for the teammates.

3.7.2 Integration of Team Messages

The positions of the teammates are communicated between the robots via the wireless network.
In a first approach these positions are also used for the localization of other robots. It is assumed
that a position sent by a teammate is often more precise than a position calculated from the
percept showing that teammate. Therefore, positions communicated by teammates are used by
the players locator.

The positions resulting from percepts are replaced by the transmitted ones. If the robot has not
received the positions from all teammates, or if the last position received is too old, the positions
calculated from percepts are kept. To avoid representing a teammate twice, a position calculated
from percepts must have a minimum distance to all positions received from teammates.

3.8. BEHAVIOR CONTROL 47

3.8 Behavior Control

The moduleBehaviorControlis responsible for decision making based on the world state, the
game control data received from theRoboCup Game Manager, the motion request that is cur-
rently being executed by the motion modules, and the team messages from other robots. It has
no access to lower layers of information processing.

It outputs the following:

• A motion requestthat specifies the next motion of the robot,

• ahead motion requestthat specifies the mode how the robot’s head is moved,

• aLED requestthat sets the states of the LEDs,

• asound requestthat selects a sound file to be played by the robot’s loudspeaker,

• abehavior team messagethat is sent to other players by wireless communication.

For behavior control the German Team uses theExtensible Agent Behavior Specification
LanguageXABSL [13] since 2002 and improved it largely in 2003. Section3.8.1gives an intro-
duction into this architecture.

For the German Open 2003, each of the four universities of the GermanTeam used XABSL
for behavior control and continued the behaviors that were developed by the German Team for
Fukuoka. They all followed different approaches:

The Darmstadt Dribbling Dackels from the Technische Universität Darmstadt won the Ger-
man Open 2003. They implemented a dynamic role assignment. They introducedcontinu-
ous basic behaviors(cf. 3.8.3) approach for the low level skills.

The Aibo Team Humboldt from the Humboldt-Universiẗat zu Berlin reached the second place
at the German Open 2003. They mainly focused on obstacle avoidance, team strategy, and
sensor-actuator coupling.

The Microsoft Hellhounds from the University of Dortmund developed a trainer and a strate-
gical database on top of XABSL.

The Bremen Byters from the Universiẗat Bremen merged the existing XABSL behaviors with
their potential field approach.

After the German Open 2003 the behaviors of the teams could be easily merged into a com-
mon solution that was continued until the RoboCup 2003 in Padova. Section3.8.2describes the
strategies and behaviors of the GermanTeam.

48 CHAPTER 3. MODULES IN GT2003

a) b) c)

goalie

goalie
before
kickoff

goalie
playing

return
to

own
goal

stand

position
inside
goal

kick
go
to

ball

go
to

point

option goalie-playing

stay
in

goal

get
to

ball

position
inside
goal

clear
ball

kick

return
to

goal

go
to

ball

return
to

own
goal

option goalie-playing

state get-to-ball

clear
ball

return
to

goal

get
to

ball

if else

ball
seen

if else-if else

ball.distance
< 15 cm

ball too
far away

Figure 3.15: a) The option graph of a simple goalie behavior. Boxes denote options, ellipses denote basic
behaviors. The edges show which other option or basic behavior can be activated from within an option.
b) The internal state machine of the option“goalie-playing” . Circles denote states, the circle with the
two horizontal lines denotes the initial state. An edge between two states indicates that there is at least
one transition from one state to the other. The dashed edges show which other option or basic behavior
becomes activated when the corresponding state is active. c) the decision tree of the state“get-to-ball” .
The leaves of the tree are transitions to other states. The dashed circle denotes a transition to the own state.

3.8.1 The Extensible Agent Behavior Specification Language XABSL

TheExtensible Agent Behavior Specification LanguageXABSL is an XML based behavior de-
scription language. XABSL can be used to describe behaviors of autonomous agents. The run-
time system XabslEngine executes the behaviors on a target platform.

Specific behavior description languages prove to be suitable replacements to native program-
ming language like C++ when the number and complexity of behavior patterns of an agent in-
creases. XABSL simplifies the process of specifying complex behaviors and supports the design
of both very reactive and long term oriented behaviors. XABSL uses hierarchies of behavior
modules called options that contain state machines for decision making.

XABSL should be applied whenever there is a behavior control problem that is too complex
to be written in C++. XABSL can be employed on any robotic platform for that a C++ compiler
exists. The XML Schemas, the tools and the runtime system XabslEngine can be downloaded
for free from the XABSL web site [12].

The language is documented in detail in appendixF. The validation and transformation tools
are described in appendixG. The runtime system XabslEngine is explained in appendixH. The
XABSL web site [12] provides XABSL examples.

The GermanTeam integrated an XABSL debug tool into the RobotControl application, which
is described in sectionJ.5.1.

3.8.1.1 The Architecture behind XABSL

In XABSL, an agent consists of a number of behavior modules calledoptions. The options are
ordered in a rooted directed acyclic graph, theoption graph(cf. 3.15a). The terminal nodes of

3.8. BEHAVIOR CONTROL 49

that graph are called basic behaviors. They generate the actions of the agent and are associated
with basic skills.

The task of the option graph is to activate and parameterize one of the basic behaviors, which
is then executed. Beginning from the root option, each active option has to activate and parame-
terize another option on a lower level in the graph or a basic behavior.

Within options, the activation of behaviors on lower levels is done by state machines (cf.
3.15b). Each state has a subsequent option or a subsequent basic behavior. Note that there can be
several states that have the same subsequent option or basic behavior.

Each option has an initial state. This state becomes activated when the option was not active
during the last execution of the option graph. Additionally, states can be declared astarget states.
In the options above it can be queried if the subsequent option reached such a target state. This
helps to check if a behavior was successful.

Additionally, each state can set special requests (output symbols), that influence the informa-
tion processing besides the actions that are generated from the basic behaviors.

Each state has adecision tree(cf. 3.15c) with transitions to other states at the leaves. For the
decisions the agent’s world state, other sensory information and messages from other agents can
be used. As timing is often important, the time how long the state is already active and the time
how long the option is already active can be taken into account.

The execution of the option graph starts from the root option of the agent. For each option
the state machine is carried out one times, the decision tree of the active state is executed to
determine the next active state. This is continued for the subsequent option of the active state and
so on until a basic behavior is reached and executed.

3.8.1.2 The XML Specification

Agents following this layered state machine architecture can be completely described in XABSL.
There are language elements for options, their states, and their decision trees. Boolean logic (||,
&&, !, ==, ! =, <, <=, > and>=) and simple arithmetic operators (+, −, ∗, / and%) can be
used for conditional expressions. Custom arithmetic functions (e.g.distance− to(x, y)) that are
not part of the language can be easily defined and used in instance documents.

Symbolsare defined in XABSL instance documents to formalize the interaction with the soft-
ware environment. Interaction means access to input functions and variables (e. g. from the world
state) and to output functions (e. g. to set requests for other parts of the information processing).
For each variable or function that shall be used for conditions a symbol has to be defined. This
makes the XABSL framework independent from specific software environments and platforms.

As the basic behaviors are written in C++, prototypes and parameter definitions have to be
specified in an XABSL document so that states can reference them.

Below is an XABSL example source code of the option”goalie-playing” (cf. 3.15b).

<option name="goalie-playing" initial-state="stay-in-goal"
description="goalie playing behavior">

...
<state name="get-to-ball">

50 CHAPTER 3. MODULES IN GT2003

<subsequent-basic-behavior ref="go-to-ball"/>
<set-output-symbol ref="head-control-mode"

value="search-for-ball"/>
<decision-tree>

<if>
<condition description="ball seen">

<less-than>
<decimal-input-symbol-ref

ref="ball.time-since-last-seen"/>
<decimal-value value="2000"/>

</less-than>
</condition>
<if>

<condition description="ball kickable">
<less-than>

<decimal-input-symbol-ref ref="ball.distance"/>
<decimal-value value="150"/>

</less-than>
</condition>
<transition-to-state ref="clear-ball"/>

</if>
<else-if>

<condition description="ball too far away">
<greater-than>

<decimal-input-symbol-ref ref="ball.distance"/>
<decimal-value value="900">

</greater-than>
</condition>
<transition-to-state ref="return-to-goal"/>

</else-if>
<else>

<transition-to-state ref="get-to-ball"/>
</else>

</if>
<else>

<transition-to-state ref="return-to-goal"/>
</else>

</decision-tree>
</state>
...

</option>

3.8. BEHAVIOR CONTROL 51

play
soccer

initial

ready

playing

penalized

final

own
goal

opponent
goal

special
action

go
to

kickoff
position

own
kickoff

opponent
kickoff

stand

simple
get
to

position
and

avoid
obstacles

walk
go
to

point

go
to

point
and

avoid
obstacles

do
kick

turn
for
ball

cont
turn
to

ball

cont
turn

playing
goalie

playing
supporter

playing
striker

goalie
clear
ball

block
ball

cont
goalie
guard

cont
goalie

position

turn
and
kick

approach
close
ball

cont
goalie
clear

cont
turn
with
ball

go
to

ball

search
for
ball

playing
supporter

switch
roles

get
to

position
and

avoid
obstacles

do
nothing

cont
go

forward
to

point

playing
defensive
supporter

playing
offensive
supporter

supporter
position

near
ball

get
to

ball
and

avoid
obstacles

position
supporter

on
line

position
defensive
supporter

near
own
goal

cont
supporter
position

position
offensive
supporter

near
opponent

goal

handle
ball

position
striker
when
ball
in

own
penalty

area

handle
ball
in

center
of

field

handle
ball
at
left
and
right

border

handle
ball
at

opponent
border

handle
ball
near
own
goal

handle
ball

when
not

stuck

kick
when
stuck

dribble
ball

kick
when
not

stuck

catch
and
kick

kick
exactly

do
sideward

kick

do
arm
kick

catch
ball

fast
approach

ball

go
to

ball
and
kick

do
paw
kick

do
special
action

do
lance
kick

leave
field

Figure 3.16: The option graph of the soccer related behaviors of the GermanTeam.

3.8.2 The Behaviors of the GermanTeam

A extensive generated HTML documentation of the GermanTeam behaviors can be found under
http://www.ki.informatik.hu-berlin.de/XABSL/examples/gt2003/index.html.

Top Level Behaviors.The GermanTeam supports the RoboCup Game Manager to minimize
human interaction during the games. The robots walk to their kickoff positions and start/stop the
game autonomously. The top level behaviors are implement this.

Negotiations and Dynamic Role Assignment.The three field players negotiate, which of them
is the striker, the offensive supporter, or the defensive supporter. This is done depending on the
estimated time that each robot needs to approach the ball. This time is influenced by the distance
to the ball, the angle to the ball, the time since the ball was seen last and the obstacle model.

Positioning. At it is disadvantageous if three field players are in the near of the ball, the robots
distribute over the whole field. Only two robots are in the same half of the field at the same
time. One supporter always tries to position in the near of the striker. If the striker plays near the
opponent goal, the supporter positions on the other side of the goal. This helps, if the kick of the
strike does not hit the goal.

Obstacle Avoidance.The GermanTeam uses the obstacle avoidance that was shown in the ob-
stacle avoidance challenge during the whole games. It is used during positioning, ball searching
and ball approaching. Only in the near of the ball (less than 70 cm) it is switched off.

Ball Handling. Although the GermanTeam also implemented a dribbling behavior, most of the
time the robots try to kick the ball. The kick is chosen dependent on the obstacle model, the

52 CHAPTER 3. MODULES IN GT2003

position of the robot, the angle to the seen free part of the opponent goal and the position of
teammates.

If there are many other robots in the near of the robot, the striker does not try to grab the ball
and kick it exactly. It chooses a fast and possibly not that accurate kick. If there is time (which did
not happen very often), it grabs the ball, searches for the free part of the opponent goal, rotates
to the angle and kicks.

If the free part of the opponent goal is not seen, the obstacles model provides a good kick
angle. The robots try to kick around obstacles. If there is a teammate in a free area, the striker
tries to kick the ball there.

Ball Loss. If a robot looses a ball (does not see it anymore), the ball is mostly beside the robot.
Because of that, it first heads back for about 20cm and mostly redetects the ball then. If not, the
robot starts turning. If the ball is not seen by any robot of the team for a while, the robots begin
to search the ball at role-dependent positions.

Communicated Ball Positions.Two ball positions are distinguished. The“seen” position is
modeled from own observations. Theknownposition is estimated from observations by other
teammates. As theknownposition is mostly not that exact, it is used only for behaviors where no
exact position to the ball is needed (supporter positioning, approaching far away balls). Only the
“seen” position is used for ball handling.

Goalie.Because of the usage of field lines for localization, the goalie was mostly well localized.
It does not leave the own penalty area. If the ball is inside the own penalty area, the robot tries
to approach the ball as fast as possible, avoiding the edges of the own goal. The obstacles model
provides an angle where to kick the ball. This angle was used to select one out of three fast kicks.

If the goalie loses the ball (doesn’t see it anymore), it goes back into the center of the own
goal. This helps when the ball is beside the goalie on the ground line. When the goalie reaches
the center of the own goal, it will see the ball again and can clear it.

Cheering and Artistry. The Sony Four Legged League is the most interesting league for the
audience, because the robots behave so cute. To make the games look more amusing some spec-
tacular kicks and a lot of cheering behaviors were implemented. After each goal the robots rejoice
(head stands, nodding, walking on back, etc.) or are annoyed (scratching head, shake head, etc).
The robots leave the field autonomously after each game.

3.8.3 Continuous Basic Behaviors

Besides simple basic behaviors that execute a discrete action like performing a kick or walking
in one direction, there are more complex behaviors that allow pursuing multiple objectives si-
multaneously while leading over from one action to another continuously. Such a basic behavior
e. g. could move towards the ball, while at the same time it is avoiding to run into obstacles by
moving away from them.

3.9. MOTION 53

a) b) c)

Figure 3.17: Continuous basic behaviors. a) Potential field for going to the ball while avoiding running into
the own penalty area. b) Resulting walking path demonstrating the go to ball basic behavior. c) Walking
path for a basic behavior going to the own goal without running over the ball.

These behaviors are called continuous basic behaviors and are implemented following a po-
tential field approach. The potential field defining one basic behavior is configured by putting
together several so-called rules, i. e. components representing single aspects of the desired be-
havior. Each rule is a simple potential field either attractive to a target position or repulsive from
one or multiple objects. These rules may be e. g. going to the ball or avoiding running into the
own penalty area.

The potential fields of all rules for one basic behavior are superposed resulting in one field
which is evaluated at the position of the robot to generate the current walking direction and speed
(cf. Fig. 3.17).

3.9 Motion

The moduleMotionControlgenerates the joint positions sent to the motors and therefore is re-
sponsible for controlling the movements of the robot.

It receives a motion request fromBehaviorControlwhich is of one of four types (walk, stand,
perform special actionor getup). In addition, if walking is requested it contains a vector de-
scribing the speed, the direction, and the type of the walk as there are several different types of
walking, such as dribbling the ball, the behavior can choose from. In case of a special action
request it contains an identifier defining the requested action.

54 CHAPTER 3. MODULES IN GT2003

Figure 3.18: Walking by moving feet in rectangles

FurthermoreMotionControlreceives head joint values from the moduleHeadControlwhich
is described below (cf. Sect.3.9.3). These values are inherited byMotionControlbut may be
overridden if the current motion also requires controlling the head, e. g., for a kick with the head
or dribbling the ball while holding it with the head.

Finally MotionControlgets current sensor data, because for some motions, sensor input is
required, e. g., standing up uses acceleration sensors to detect how to stand up.

From these inputs the module produces a buffer containing joint positions and odometry
data, i. e., a vector describing locomotion speed and direction, which, e. g., serves as input for
self-localization.

In respect to the system’s modular approach,MotionControluses different modules for each
of its tasks as well. There is a walking engine module for each possible walking type. Therefore
each walking type can be performed by completely different walking engines as well as instances
of the same engine with different sets of parameters. How the walking engine works is described
below (cf. Sect.3.9.1). The module executing special actions is described below as well (cf.
Sect.3.9.2). A getup engine module brings the robot to a standing position from everywhere as
fast as possible. For standing, the walking engine for the normal walk type is executed with a
speed set to zero. Thus changing from standing to walking is possible immediately as the stand
position is automatically adjusted to the current walking style.

When the currently used motion module does not reflect the requested motion, the module is
changed after it signals that the current motion is finished. Therefore the modules are responsible
for correct transitions to other motion types, e. g., a walking engine will signal that a change to
a different motion type is only possible after the current step is finished, i. e., all feet are on the
ground.

3.9.1 Walking

A walking engine is a module generating joint angles in order to let the robot walk with the
speed and the direction requested from behavior control. The implementation described here is
called InvKinWalkingEngine. A main feature is that the engine and the parameters it uses are
separated. The engine offers a huge set of parameters. This allows creating completely different

3.9. MOTION 55

a) b) c) d)

Figure 3.19: Principle of treating legs as wheels. Walking a) forwards, b) sideways. c) Turning. d) Turning
while walking forward.

walks with the same engine by having different parameter values. A class containing the set
of parameter values is given to the constructor of the engine. Therefore it is possible to have
different instances with different parameter sets. It is even possible to transmit new parameters
via the wireless network from RobotControl to test them at runtime (cf. Sect.J.7.1).

3.9.1.1 Approach

The general idea is to calculate the position of the feet relative to the body while they move in
rectangles around the center position (cf. Fig.3.18). The joint angles needed to reach the foot
position are then calculated with inverse kinematics.

For the direction of walking the four legs are more or less treated as wheels. Seen from above
the rectangles are rotated to the desired walking direction (cf. Fig.3.19a, b). Turning is done by
moving each leg in a different diagonal direction (cf. Fig.3.19c). Walking and turning can also
be combined resulting in curved walking. This is done by simple vector addition for each leg (cf.
Fig. 3.19d).

The walking speed is defined by the size of the rectangles. The time for one step is constant
but when walking faster the step length is greater.

The position and size of these rectangles and the walking gait is defined by the parameter set.

3.9.1.2 Parameters

As mentioned before the actual walking style the engine generates is mainly defined by the set
of parameters applied. The parameters are the following:

footMode. This parameter selects how the feet will be moved while in the air. Besides the
rectangular shape mentioned above it is also possible to have the feet move in different
shapes, e. g. a semi-circle like it was the case in our walking engine for RoboCup 2001
(cf Fig. 3.20). This parameter was not used much since the rectangular shape seemed to
provide best general performance. It was mainly included for increasing flexibility.

56 CHAPTER 3. MODULES IN GT2003

a) b) c) d) e)

Figure 3.20: Possible modes of foot movement a) rectangle b) semi-ellipse c) ellipse d) oval e) arbitrary
quadruple.

maxStepSizeY

maxStepSizeX

x

y

Figure 3.21: Ellipse describing possible foot target positions seen from above

foreHeight, foreWidth, foreCenterX. These values describe the center foot position of the
forelegs relative to the body of the robot.

hindHeight, hindWidth, hindCenterX. The same values for the hind legs describing center
foot positions.

foreFootTilt, hindFootTilt. The foot rectangles are rotated by these angles to compensate for
different fore and hind walking heights.

foreFootLift, hindFootLift define the feet lifting, i. e. the height of the rectangles.

legSpeedFactorX, legSpeedFactorY, legSpeedFactorR.These values are factors between the
speed of the fore and the hind legs. With these parameters it is possible to have different
speeds for the fore and the hind legs. This can be useful when, e. g., the forelegs are limited
to very small steps due to their position but the hind legs may still do greater steps.

maxStepSizeX, maxStepSizeY.These are the maximum step sizes that are applied when walk-
ing with full speed. They are the radii of the ellipses shown in figures3.21and3.19. The
rectangles are clipped to these ellipses.

maxSpeedXChange, maxSpeedYChange, maxRotationChange.By these values the acceler-
ation of the robot is limited. A rapid change of the walking request from behavior control

3.9. MOTION 57

groundPhase

liftPhase
loweringPhase

z

t/stepLen

groundPhase liftPhase loweringPhase

airPhase = 1 - groundPhase - liftPhase - loweringPhase

airPhase

1

footLift

Figure 3.22: Timing of one step cycle

is applied gradually according to these limits. This prevents stumbling or even falling over
when the request is changed.

counterRotation. When walking sideways, the robot sometimes tends to walk in a circle due to
different contact situations or different step lengths of fore and hind legs. With this value a
rotation is generated while walking sideways that compensates this unwanted effect.

stepLen. This is the time for one complete step cycle (cf. Fig.3.22).

groundPhase, liftPhase, loweringPhase.These values define the timing of the step cycle (cf.
Fig. 3.22). groundPhasedefines how much time of the step cycle the foot will be on the
ground.liftPhasedefines how fast the foot will be lifted,loweringPhasehow fast it will be
lowered. There are two values each, one for the fore and one for the hind legs.

legPhase.These values set the relative phase offsets of each leg and therefore define the gait.
For each leg there is a value which describes when, relative to the start of one step cycle,
the foot is lifted.

Although the engine could employ different gaits, all currently available parameter sets
use the trot gait, i. e., two diagonally opposite legs perform the same movement, while the
other two legs move with a half gait phase offset. For the leg phase parameters this means
the values for the left fore and the right hind leg are zero, while the values for the right fore
and left hind leg are 0.5.

bodyShiftX, bodyShiftY, bodyShiftOffset. These values allow realizing a body shift away
from currently lifted legs. The shift of the robot’s body is performed by simply mov-
ing each foot position in the opposite direction. The valuesbodyShiftX/bodyShiftYdefine
how much the body is shifted away from currently lifted feet inx/y-direction. The value
bodyShiftOffsetallows defining a time offset for the body shift so that optimally the weight
is shifted away from a foot before it is lifted.

58 CHAPTER 3. MODULES IN GT2003

These values have no effect when using the trot gait due to the gait’s symmetry, as diag-
onally opposite leg pairs are lifted simultaneously. Therefore these values are not used in
current parameters sets but they increase the flexibility of the walking engine.

headTilt, headPan, headRoll, mouth.If these values are given they are used as angles for the
head joints and the mouth. Setting these values disables the normal head motion control
but can be useful, e. g. for a special walking type that holds the ball with the head.

freeFormQuadPos. These values only get evaluated when the foot mode for arbitrary quadru-
ples is used (cf. Fig.3.20e) and define the exact geometry of the quadruple. They contain
three-dimensional coordinates for the four vertex coordinates for fore and hind legs.

3.9.1.3 Odometry correction values

Due to slippage the effective speed a walk produces differs from the calculated speed the feet
have on ground and it depends quite heavily on the current underground. Therefore the maximum
speed of a walk has to be measured manually. The measured speeds are stored in a file on the
robot’s memory stick and, they are used to correct the leg speeds so that the resulting speed of a
certain gait matches the motion request.

3.9.1.4 Inverse kinematics

After the desired leg position is calculated, it is necessary to calculate the required leg joint angles
to reach that position. Therefore it is necessary to determine the necessary joint angles to reach a
given robot relative target position. This is called inverse kinematics problem.

In general the inverse kinematics problem is a set of non-linear equations, which can often
be solved numerically only. In the given case it is possible to derive a analytical closed form
solution for the inverse kinematics for one leg of the robot.

Forward kinematics solution. First a solution to the forward kinematics problem is given.
This is used in solving the far more difficult inverse kinematics problem.

The forward kinematics problem is the calculation of the resulting foot position for a given
set of joint angles.

The foot position relative to the shoulder joint(x, y, z) can be determined using a coordinate
transformation. The origin of the local foot coordinate system is transformed into a coordinate
system which origin is the shoulder joint.

In the following a simplified model of the robot’s leg is applied in which this transformation
is composed of the following sub-transformations:

1. clockwise rotation about the y-axis by joint angleq1

2. counterclockwise rotation about the x-axis by joint angleq2

3. translation along the negative z-axis by upper limb lengthl1

3.9. MOTION 59

4. clockwise rotation about the y-axis by joint angleq3

5. translation along the negative z-axis by lower limb lengthl2

In homogeneous coordinates this transformation can be described as concatenation of trans-
formation matrices:

x
y
z
1

 = Roty(−q1)Rotx(q2)Trans

 0
0
−l1

 Roty(−q3)Trans

 0
0
−l2

0
0
0
1

 (3.22)

Rotx/y(α) means a counterclockwise rotation around thex/y-axis of angleα andTrans

 tx
ty
tz

a translation of the vector(tx, ty, tz).

This is equivalent to:
x
y
z
1

 =

cos(q1) 0 − sin(q1) 0

0 1 0 0
sin(q1) 0 cos(q1) 0

0 0 0 1

1 0 0 0
0 cos(q2) − sin(q2) 0
0 sin(q2) cos(q2) 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 −l1
0 0 0 1

cos(q3) 0 − sin(q3) 0
0 1 0 0

sin(q3) 0 cos(q3) 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 −l2
0 0 0 1

0
0
0
1

 (3.23)

Matrix multiplication results in
x
y
z
1

 =

cos(q1) sin(q3)l2 + sin(q1) cos(q2) cos(q3)l2 + sin(q1) cos(q2)l1

sin(q2)l1 + sin(q2) cos(q3)l2
sin(q1) sin(q3)l2 − cos(q1) cos(q2) cos(q3)l2 − cos(q1) cos(q2)l1

1

 . (3.24)

This equation (and all of the following) is correct only for the left fore leg. But due to the
symmetry of the coordinate systems of the four legs, only the signs differ in the calculation for the
other legs. Thus when calculating the position of a right foot they-coordinate has to be negated,
for a hind foot thex-coordinate. Furthermore the lower limb lengthl2 is slightly larger for the
hind legs.

Calculation of knee joint angleq3. To solve the inverse kinematics problem first of all the knee
joint angleq3 is calculated. As the knee joint position determines how far the leg is stretched, the
angle can be calculated from the distance of the target position(x, y, z) to the shoulder joint.

60 CHAPTER 3. MODULES IN GT2003

l1

l
2

q1

q3

q3

a

l1

l2

(0, 0, 0) shoulder joint

(x, y, z) foot position

x²+y²+z²

Figure 3.23: leg side view, calculation of knee jointq3 via law of cosine

According to the law of cosine (cf. Fig.3.23)

cos α =
l21 + l22 − x2 − y2 − z2

2l1l2
(3.25)

with upper limb lengthl1 and lower limb lengthl2.
With

|q3| = |180◦ − α| = arccos
x2 + y2 + z2 − l21 − l22

2l1l2
(3.26)

the absolute value of the first joint angle is calculated.
The inverse kinematics problem always has two solution, as there are two possible knee

positions to reach a given target. These two solutions are selected via the sign ofq3. With respect
to the joint limitations the positive value is used due to the larger freedom of movement for
positiveq3.

Calculation of shoulder joint q2. Plugging the result forq3 into the forward kinematics so-
lution allows determiningq2 easily. According to equation (3.24) (geometrically apparent cf.
Fig. 3.24)

y = sin(q2)l1 + sin(q2) cos(q3)l2

= sin(q2) [l1 + cos(q3)l2] . (3.27)

Consequently

q2 = arcsin

(
y

l2 cos(q3) + l1

)
. (3.28)

Since|q2| < 90◦ determination ofq2 via arc sine is satisfactory.

3.9. MOTION 61

q2

l
1

l
2cos q

3

y

Figure 3.24: leg front view, calculation of shoulder jointq2

Calculation of shoulder joint q1. Finally the joint angleq1 can be calculated. According to
equation (3.24)

x = cos(q1) sin(q3)l2 + sin(q1) cos(q2) cos(q3)l2 + sin(q1) cos(q2)l1

= cos(q1) sin(q3)l2 + sin(q1) [cos(q2) cos(q3)l2 + cos(q2)l1] . (3.29)

When defining

a := sin(q3)l2, (3.30)

b := − cos(q2) cos(q3)l2 − cos(q2)l1 (3.31)

and

β := arctan
(a

b

)
, (3.32)

d :=
√

a2 + b2

(
=

b

sin(β)

)
, (3.33)

so that

a = d cos(β), b = d sin(β), (3.34)

equation (3.29) simplifies to

x = cos(q1)a− sin(q1)b

= d [cos(q1) cos(β)− sin(q1) sin(β)] (3.35)

62 CHAPTER 3. MODULES IN GT2003

which can be transformed to

x = d cos(q1 + β). (3.36)

Hence

|q1 + β| = arccos
(x

d

)
. (3.37)

The sign ofq1 + β can be obtained by checking the z-component of equation (3.24). As in
equations (3.29)-(3.36) this results in:

z = sin(q1) sin(q3)l2 − cos(q1) cos(q2) cos(q3)l2 − cos(q1) cos(q2)l1

= sin(q1) sin(q3)l2 − cos(q1) [cos(q2) cos(q3)l2 + cos(q2)l1]

= sin(q1)a + cos(q1)b

= d [sin(q1) cos(β) + cos(q1)sin(β)]

= d sin(q1 + β). (3.38)

As d > 0, q1 + β is of the same sign asz. Hence ifz < 0 the calculated value ofq1 + β has
to be negated.

After subtraction ofβ the last joint angleq1 is computed.

3.9.2 Special Actions

Special actions are all motions of the robot that are not generated by their own algorithms but
merely consist of a sequence of fixed joint positions. Currently this includes a wide variety of
kicks with which it is possible to play the ball from different positions relative to the robot to
various directions. The behavior is responsible for choosing the correct kick according to the
position of the ball and the game situation.

The moduleSpecialActionsis responsible for performing these motions. It receives the cur-
rently requested motion and produces joint angles as well as the odometry vector of the resulting
movement.

The module implements a chain of nodes which is traversed every time the module is exe-
cuted. These nodes either contain joint data, PID data, transitions, or jump labels.

Joint data nodes contain angles for all joints which are sent to the robot as well as timing
information that state for how long these values will be sent.

Transition nodes contain a destination node and an identifier for the target special action. If
the currently requested motion matches the target, the transition is followed. By this mechanism
the nodes will be traversed. This ensures that the requested special action as well as the transitions
from the current motion get executed. With transitions it is possible to define that another action
has to be executed before the requested action, e. g. grabbing the ball before kicking.

The nodes for each special action are specified in a special description language which is
compiled into C code with its own compiler which is described in section5.4. The generated code

3.9. MOTION 63

is part of the special action module. For each special action there is one file in the description
language which contains all the necessary joint data and transition statements.

In addition, there is one special file calledexternwhich serves as entry point to the module.
It contains transitions to all special actions of which the correct one will be executed when the
module is entered from other motion types.externalso serves as special transition target for
leaving the special action module. If another motion type is requested, the special action module
continues until a transition toexternis reached. By this the current special action will always be
finished, avoiding, e. g., starting to walk while standing on the head.

The odometry data is calculated from the current movement and rotation speed that are taken
from a table containing values for all special actions. This table can contain information about
the result of completely executing a special action once, e. g. that the bicycle kick turns the robot
by 180 degrees. In addition the table may contain entries giving a constant speed for a special
action.

3.9.3 Head Motion Control

The moduleHeadControldetermines where the robot is looking at. It receiveshead control
modesfrom the behavior control and generates the requiredhead motion requestswhich contain
the angles of the three head joints and the mouth. These requests are sent to the moduleMo-
tionControl that forwards them directly to the motors (cf. Sect.3.9). Furthermore,HeadControl
receives sensor data and the internal world model.

3.9.3.1 Head Control Modes

Since the robot can only see a small portion of its environment, it is necessary to have its head
(and thus its camera) point in certain directions depending on the situation the robot is facing.
A number of such situations have been identified and suitable head motions where developed,
calledhead control modes. Some modes are more elemental, such as thelook-at-pointmode,
whereas others utilize the basic modes (or the concepts of these modes) to achieve more complex
solutions such as tracking the ball. The most interesting modes are:

Look at point. If this mode is selected, the robot will look at a certain position in 3-D space
specified in its own system of coordinates. It can even look with a certain camera pixel to
that position. This is quite useful to see as much as possible, e. g. by keeping the center
of the ball in the lower left corner of the image you may see opponents or landmarks in
the upper right corner. That feature makes calculation harder, but it is still manageable and
well explained in the source code. The main idea is to look at the ray into space produced
by looking with a certain camera pixel. The differences between the arcs to the destination
point and the arcs to the ray are the tilt and pan angles that are looked for.

Search for Landmarks. In this mode the robot searches for landmarks, i. e. flags and goals.
The head moves in a manually tuned polygon scanning the area in front of the robot. No
knowledge of the world is used to guide the scanning motion.

64 CHAPTER 3. MODULES IN GT2003

Search for Ball. This mode looks at the ball usingLook at pointif the robot has seen it. Other-
wise a manually tuned constant scan for the ball is started. In this year’s approach no ball
speed and no communicated ball positions are used, because they were not precise enough
to base a smooth head control on.

Search auto. This mode was developed to allow the robot to track the ball successfully while
maintaining its bearing on the field. To achieve this, a robust ball tracking had to be estab-
lished that allows the robot to scan for landmarks occasionally. In contrast to last year’s
approach no world model information is used to predict where landmarks should be. In-
stead of only looking to the position a landmark is already believed to be it is tried to see
as much as possible including landmarks, obstacles, and other robots. The robot looks at
the ball until it has seen it consecutively for more then 300 ms. Then it scans for landmarks
and other objects on one side of the ball. After looking at the ball again it will scan the
other side. No scan will take more than 880 ms. If the ball was not seen, the robot scans for
it, because this head control mode is not useful without seeing the ball. Only ball positions
resulting from the robot’s own perception were used to look at the ball. Speed propagations
and balls seen by other robots were not exact enough to base a head control mode on. The
behavior has to follow such information to bring the robot into a position were it can see
the ball on its own. All together this performed much better than the approach used last
year.

3.9.3.2 HeadControl State Machine

GT2003HeadControl uses an internal state machine to handle switching between differenthead
control modeswhile maintaining internal states such as to which side of the ball the last scan for
landmarks was executed or whether the ball had been seen when it was tried to look at it the last
time. This made the HeadControl produce much smoother results than in the years before, even
if the requested head control modes changed quite rapidly.

3.9.3.3 Head Path Planner

The head path planner was used to plan a number of way points for the head in advance. This is
useful to describe a scan motion with several points and only a single overall duration. This works
from every starting position of the head because the distance to the first way point is considered
during the computation of the constant head speed to reach the last way point in the time given.
So it was easy to fine-tune the speed of the head in certain situations by just a single parameter.

3.9.3.4 Joint Protection

The destination head joint angles, no matter whether they came from a debug request, a special
action, a special walking, or a head control, will be restricted to a maximum change speed by
MotionControl to avoid damaging the head joints. This way a head control does not need to care
about maximum head speed, it only has to be aware of MotionControl limiting the requested

3.9. MOTION 65

speed, e. g. it is very easy to implement a head control mode like that: look as far left as you can
in 150 ms and then look back to the ball.

Chapter 4

Challenges

In 2003, the technical challenge in the Sony Legged Robot League comprised the three separate
tasks “scoring a goal with a black and white ball”, “localization without the colored beacons”,
and “obstacle avoidance”. The GermanTeam won this challenge. A specialty about the solutions
found by the GermanTeam for the different tasks is that two of them were not only used in the
challenge, but also in actual RoboCup games, namely the obstacle avoidance and the edge-based
localization.

4.1 Black And White Ball

The ball challenge can be divided into two parts: the detection of the ball and a special behavior
for handling the ball.

4.1.1 Detection of the ball

Different algorithms to detect a black and white ball have been evaluated. An edge detection
filter followed by a Hough transform has proved to be suitable.

First of all, all vertical edges are detected by a Sobel filter. If the edge is large enough, it
is tested, whether it could be an edge of the ball. Therefore, the number of green, white and
black pixels left of, right of, above and below the edge pixel are counted. If the count exceeds a
pre-defined threshold value, the pixel presumably belongs to a ball edge.

To detect the ball, a Hough transform is performed for all pixels on the edge of the ball. If
multiple circles, each with the same radius, are constructed in a way such that their centers lie
on another circle, they intersect in the center of this circle. In this case, the resulting circle is
equivalent to the ball.

The image is first divided into cells of 5 x 5 pixels each. Then, for each pixel on the edge of
the ball, circles with the same radius are drawn to detect the cell with the most intersections with
circles. This cell could be the center of the ball.

66

4.1. BLACK AND WHITE BALL 67

Figure 4.1: Debug-Image. Strong edges are shown in blue. Pixels on the edge of the ball are colored green.
The red circle is the result of the Hough transform

This procedure should be performed for all possible radii to find the radius with most inter-
sections for a cell. This radius and the center of the cell are assumed to be the radius and center
of the ball.

Because of limited computing time, not all possible, but only eleven different radii are tested.
Thus, the calculation of the radius and the distance become less precise.

Then it is checked whether the circle really covers the ball. Therefore, 80 pixels from the
inside of the circle are chosen at random. At least 50% of them have to be black or white, and at
least 10% of them have to be black.

4.1.2 Behavior for the Ball Challenge

As all behaviors of the GermanTeam, the behavior control for this challenge was developed based
on XABSL (AppendixF).

Because normal kicks were ineffective, there were two approaches bringing the ball into the
goal. The first was to grab the ball and to walk into the goal while holding the ball between the
forelegs. The results of this solution were not as good as expected, so the second solution was
used. In this solution the ball was pushed into the target goal.

The behavior for the challenge works in the following way:

1. Search for the ball.If the ball was not seen, the robot walks towards some specific areas
on the field, which are chosen in a way that the ball should be seen within a distance of
less than 80cm.

2. Move in position.If the ball was found, the robot tries to get behind the ball. If the deviation
between the straight line from the ball to the goal and the straight line from the ball to the
robot is less than five degrees the robot continues with step 3.

3. Move ball towards goal.If the robot is in position, it moves forward with stretched out
front legs and dribbles the ball towards the goal. If the robot is not in the right position
behind the ball, the behavior returns to step 1 or 2.

68 CHAPTER 4. CHALLENGES

challenge
2

localization
without

the
colored

landmarks

challenge
2

run

stand

challenge
2

go
to

position

challenge
2

reach
position

walk

cont
go

forward
to

point

go
to

point
precisely

Figure 4.2: Option tree used for challenge 2.

4.1.3 Results

The ball was detected very well and the robot reached it first compared to the other teams. The
robot dribbled the ball towards the goal, but the uneven lawn caused the ball to roll away towards
the edge of the field. In the remaining time, the robot was unable to re-detect the ball.

4.2 Localization

The goal of the localization challenge was to reach five target positions on the field without
the help of the colored beacons. The GermanTeam used the lines self-locator for this challenge
that was already presented in section3.3.3. The only two things left to explain are the behavior
control used in this challenge, and the control of the robot’s head.

4.2.1 Behavior Control

The behavior was modeled in XABSL2 and consisted of four options (cf. Fig.4.2):

4.2. LOCALIZATION 69

1. The first option just handles the back switch of the robot, i. e. if the button is pressed, the
second option is executed, and if the back switch is pressed for more than one second, the
behavior returns to its initial state.

2. The second optionrun cycles through the five target positions and forwards one after the
other to the third option. The five positions are realized as three XABSL-symbols (forx,
y and rotation) that can be parameterized by the index (0 . . . 4) of the position. As a side
effect of asking for the first position, a traveling salesman algorithm plans the shortest path
through all five positions starting with the actual position of the robot, i. e. it is assumed
that the robot is localized at this point in time. After testing some different approaches, it
was decided that the rotation of the robot at the target positions is selected in a way that
the robot always looks at the border of the field.

3. The third optiongo-to-positiondecides whether the robot is localized or not, and if it is not
after a few seconds, the robot turns by 180◦ to re-localize. If it is localized, the final option
is executed that actually moves the robot to a target position. If the robot has reached that
position, it will wag its tail.

4. The fourth and final optionreach-positionmoves the robot to the target position. It starts
with a basic behavior that walks to a certain position while avoiding obstacles, just in case
the goal posts will be on the planned path. If the robot is closer than 20 cm to the target
position, it continues to walk without avoiding obstacles and it will also turn to the pre-
computed direction. If the robot has reached the target posture with a deviation of less than
5 cm and less than 10◦, the option enters another state that terminates if the robot comes
closer than 2 cm to the target location or if more than 15 seconds have passed. The latter
condition ensures that the robot does not wait forever for reaching a target position.

4.2.2 Head Control

The experiments in section3.3.3had shown that the precision of the lines self-locator depends on
the target location to reach, in fact, it depends on the distance to the closest lines in two orthogonal
directions. Therefore, high precision was required to have a chance to reach the target positions
sufficiently precise. In experiments it turned out that distance measurements were more precise
when the tilt joint of the head remains in a constant position. Therefore, to move the robot’s head
a simple left to right and back scanning method was preferred over a more intelligent field line
and border scanning approach (that was used by the Bremen Byters at the German Open 2003).
However, while this decision was well suited for the test positions, it was very disadvantageous
for the actual challenge, because two target positions were so close to the border that the robot
was not able to see it anymore, and a third position was so close at the center circle that the robot
had to use the border and the penalty line to localize, which were quite far away, resulting in poor
precision.

70 CHAPTER 4. CHALLENGES

4.2.3 Results

While the approach was always able to reach all five test positions, scoring at least 13 points, it
nearly failed in the actual challenge. It only reached one position precisely and two others with
a deviation of 7.5 cm. The remaining two positions were reached with larger errors, although
the robot never lost track of its location. The final score was only five points. However, only one
team scored more. The team from Washington University also scored five points, and because
they scored them at the first two positions, they were faster, and the GermanTeam finally reached
the third place in this challenge.

4.3 Obstacle Avoidance

The obstacle avoidance approach described here finished first in the challenge. The robot finished
the course in 36 seconds, approximately twice as fast as the runner up. The robot had to move
from one goal to the other with 7 other robots standing on the field in typical game-like positions.

For this challenge, alocal obstacle avoidance method was used. This is in contrast to some
approaches that used global path planning and even search algorithms. Obstacle avoidance was
based on the obstacle model described in3.5.

The fundamental idea was to have the robot always face the direction it is moving in to make
sure it does not run into obstacles it is unable to see. (Therefore, the robot would never walk
backwards or sideways.)

To move towards the destination, two states where used:

• Move freely. If no obstacles were detected in the direction of the destination (or rather if
the free length of path was greater than a threshold), the robot would turn in the direction
of the destination (until the robot is facing in that direction) and walk forward at the same
time.

• Avoid obstacle.If an obstacle was detected in the robot’s way, the robot would turn away
from it while still walking forward. The forward speed is determined by the distance to
the closest obstacle in the direction the robot is walking in. This ensures that the robot will
never run into an object as long as it is able to see it.

In all cases, it was checked against the obstacle model whether the space the robot was
moving to was empty. This is particularly important when the robot is passing an obstacle. At
some point, it is not able to see it anymore. In test runs, the robot would often try to avoid an
obstacle and then, after passing it, run into it while trying to turn to the destination.

The robot’s head performs a left/right-scanning motion. This, on the one hand, has the ad-
vantage that it is possible to create a detailed obstacles model (or map) of the robot’s local
surroundings with enough information for the robot to find a good path. On the other hand it
caused the robot to come into close vicinity of obstacles when it was facing the other way. For
the robot, these obstacles would “pop up” from out of nowhere. Both the robots forward speed
and the angle range of the scanning motion had to be carefully adjusted to keep the robot safe
from obstacles.

4.3. OBSTACLE AVOIDANCE 71

A local obstacle model was used (rather than a global one) for a number of reasons: the
model is independent of localization, it is easily applicable in non-RoboCup environments, and
this approach is well suited for dynamic environments (such as actual RoboCup games, although
the challenge’s setup itself was static).

A video of the run is available for download athttp://www.aiboteamhumboldt.com.

Chapter 5

Tools

The GermanTeam spent a lot of time on programming the tools that do not run on the AIBO
platform but that helped very much in the development of the soccer software.

In section5.1and5.2 two very similar programs are described: SimGT2003 and RobotCon-
trol. They both have in common:

• The complete source code that was developed for the robot is also compiled and linked
into these applications. That allows algorithms to be tested and debugged very easily. New
source code can be tested with the tools before compiling it for the robot and testing it on
the field.

• As the interfaces of the source code to the physical robot are very narrow, the robot could
be easily replaced by a simulator.

• They provide a lot of debugging and visualization tools.

Section5.3 describes a router software for the wireless network that dispatches messages
between the robot and SimGT2003/RobotControl.

TheMotion Net Code Generator(cf. Sect.5.4) was used by the GermanTeam for generating
C code from motion description files containing, e. g., the kicks as well as for generating xml
files containing a list of all motions that can be requested by the behavior.

TheEmon Log Parser(cf. Sect.5.5) was used to get as much information as possible out of
the log files produced by the Open-R SDK Emergency Monitor.

5.1 SimGT2003

SimRobot is a kinematic robotics simulator that was developed at the Universität Bremen [14].
It is written in C++ and is distributed as public domain [1]. It consists of a portable simulation
kernel and platform specific graphical user interfaces. Implementations exist for theX Window
System, Microsoft Windows 3.1/95/98/ME/NT/2000/XP, andIBM OS/2. Currently, only the de-
velopment for the 32 bit versions of Microsoft Windows is continued.

72

5.1. SIMGT2003 73

SimRobot consists of three parts: thesimulation kernel, thegraphical user interface, and a
controller that is provided by the user. Already in 2002, the GermanTeam has implemented the
whole simulation of up to eight robots including the inter-process communication described in
appendixC as such a controller, providing the same environment to robot control programs as
they will find on the real robots. In addition, an object calledthe oracleprovides information to
the robot control programs that is not available on the real robots, i. e. the robots’ own location
on the field, the poses of the teammates and the opponents, and the position of the ball. On
the one hand, this allows implementing functionality that relies on such information before the
corresponding modules that determine it are completely implemented. On the other hand, it can
be used by the implementors of such modules to compare their results with the correct ones.

SimRobot, linked with the special controller that provides the interface to the robots and
linked with the robot code is calledSimGT2003. The following sections will give a brief overview
of SimRobot, and how it is used to simulate a team of robots.

5.1.1 Simulation Kernel

The kernel of SimRobot models the environment, simulates sensor readings, and executes com-
mands given by the controller. A simulation scene is described textually as a hierarchy of objects.
Objects are bodies, emitters, sensors, and actuators. Some objects can contain other objects, e. g.
the base joint of a robot arm contains the objects that make up the arm.

Emitters. SimRobot uses a very abstract model of measurable quantities. Instead of defining
objects as lamps or color cameras that emit and measure light, it uses objects that emit intensities
of particular radiation classes(emitters) and objects that measure these intensities (sensors).
Hence, it is up to the user to define some of these abstract classes to represent real phenomena.
In case of the Sony AIBO robots, the radiation classes 0, 1, and 2 represent the three channels of
the YUV color model.

There are only two types of emitters in SimRobot:radial emitterssend their radiation to all
directions, whereasspot emittershave a certain opening cone. In addition, an ambient intensity
can be specified for each radiation class that defines the base intensity for all surfaces in a simu-
lation scene. Hence, the surfaces that are not reached by any of the emitters in a scene still have
a sensible radiation signature. In the RoboCup simulation, only a high degree of ambient white
light is used and no emitters.

Bodies. Currently, bodies can only be modeled as a collection of polygons. Each polygon has
a radiation vector that defines its appearance—together with the radiation of the emitters that
reaches the surface. The GermanTeam uses color tables to map the colors measured by the robot’s
camera ontocolor classes. To avoid having two different color tables, one for the real robot and
one for the simulation, the simulation scene is automatically colored according to the actual
color table. This is also the reason why no additional emitters are employed for illumination.
Their influence may have changed the colors of the surfaces, resulting in a wrong mapping from
colors to color classes in the image processing modules of the simulated robots.

74 CHAPTER 5. TOOLS

Actuators allow the user or thecontroller to actively influence the simulation. They can be used,
e. g., to move a robot or to open doors. Each actuator can contain other objects, i. e. the objects
that it moves. SimRobot provides four types of actuators: rotational joints, translational joints,
objects moving in space in six degrees of freedom, and vehicles with typical car kinematics, i. e.
with a driving axle and a steering axle. SimRobot is only a kinematic simulator; thus it cannot
directly simulate walking machines. Therefore, the motion of the simulated AIBOs is generated
by a trick: the GT2003 robot control program has its own model of which kind of walk will
generate a certain motion of the robot. This model is also employed for the simulation. Thus, the
simulated robots will always behave as expected by their control programs—in contrast to the
real robots, of course. In addition, the body tilt is simulated. This is performed on the assumption
that the body roll is always zero. In each simulation step, the distance of the four feet to the
ground is determined. Then the robot body is moved and rotated around the tilt axis in a way that
at least one foreleg and one hind leg touches the ground. This approach only fails if the feet are
not the lowest parts of the robot’s body, e. g. when it performs the “getup” action.

Sensors. SimRobot provides a wide variety of sensors. However, only three types of informa-
tion can be sensed:

Intensities of Radiation. There are two types of cameras that allow measuring two-dimensional
arrays of intensities of radiation. Thecameraobject imitates normal pinhole cameras, and
is used to simulate AIBO’s color camera. Thefacettesimulates cameras with a spherical
geometry, i. e. the angle between all adjacent pixels is constant. The sensor readings can
be calculated usingflat shading, i. e. each surface has a single combination of intensities,
or with different intensity signatures for each pixel. In addition, it is possible to determine
shadows.

Distances.There are several sensors that measure distances. Awhiskercan imitate the behavior
of an infrared sensor. On the one hand, it is used to simulate the PSD sensor in AIBO’s
head. On the other hand, whiskers could be employed to implement the ground contact
sensors in the feet of the robots. As these sensors are not used by the GermanTeam, this
has not been implemented yet.

Collision detection. For every actuator, it can be detected whether a collision-free execution of
the last command was possible. This information is not available in reality, but it is required
for the simulator to suppress motions that result in collisions. However, as each robot has
20 degrees of freedom, this costly calculation is even too slow for a single robot, but it
surely is for eight. Therefore, the current simulation does without collision detection.

Apart from the latter, all sensor readings can be disturbed by a selectable amount of white
noise.

5.1.2 User Interface

The user interface of SimRobot includes an editor for writing the required scene definition files
(cf. Fig.5.1, upper left window). If such a file has been written and has been compiled error-free,

5.1. SIMGT2003 75

Figure 5.1: SimRobot simulating the GermanTeam 2003.

the scene can be displayed as a tree of objects (cf. Fig.5.1, upper middle window). This tree is
the starting point for opening further views. SimRobot can visualize any object and the readings
of any sensor that are defined in a scene. Objects are displayed as wire-frames with or without
hidden line removal (cf. Fig.5.1, lower left and upper right window) and parts of the scene can
be hidden. In case of the lower left window, the flags, the goals, and the field border are not
displayed.

Sensor data can be depicted as line graphs, column graphs, monochrome images, and color
images (cf. Fig.5.1, middle right window). In addition, depth images can be visualized as single
image random dots stereograms. Any of these views and a numerical representation of the sen-
sory data can be copied to the system’s clipboard for further processing, e. g., in a spreadsheet
application or a word processor. The whole window layout is stored when a scene is closed and
restored when SimRobot is started again with the same scene.

SimRobot also has a console window that can be used to enter text and to print some data on
the screen. SimGT2003 uses this window to print text messages sent by the robot processes, and
it allows the user to enter a large variety of commands. These are documented in appendixI.

76 CHAPTER 5. TOOLS

5.1.3 Controller

The controller implements the sense-think-act cycle; it reads the available sensors, plans the
next action, and sets the actuators to the desired states. Then, SimRobot performs a simulation
step and calls the controller again. Controllers are C++ classes derived from a predefined class
CONTROLLER. Only a single function must be defined in such a controller class that is called
before each simulation step. In addition, the controller can recognize keyboard and mouse events.
Thereby, the simulation supports to move around the robots and the ball.

A very powerful function is the ability to insertviewsinto the scene. These are similar to
sensors but in contrast to them, their value is not determined by the simulation but instead by
the controller. This allows the controller to visualize, e. g., intermediate data. In fact, the middle
right window in figure5.1 is a view that contains a camera image overlaid by the so-called blob
collection, i. e., colored octagonal areas detected by the robot control program’s image processor.
The lower right window is completely drawn by the controller: a field with the visualization of
the estimations of a robot’s own pose (in this case the right goalie), the locations of some other
robots, and the position of the ball.

The whole environment that the processes of a robot control program will find on a real robot
has been resembled as such a controller. It supports multiple robots, each robot can run multi-
ple processes, these processes can communicate with each other, and also the communication
between different robots is supported. Thus the code of a whole team of four communicating
robots runs in the simulator.

5.2 RobotControl

In contrast to SimGT2003 that evolved from a pure simulator, RobotControl (cf. Fig.5.2) was
initially intended to be a general support tool that should help to increase the speed and comfort
of the software development process.

First, it functions as a debugging interface to the robot. Via the wireless network or a memory
stick, messages can be exchanged with the robot. Almost all internal representations of the robot
(images, body sensor data, percepts, world states, sent joint data) and even internal states of
modules can be visualized.

In the other direction, many intermediate representations of the robot can be set from Robot-
Control. For instance, one can send motion requests that are normally set by the behavior control
module of the robot to test the motion modules separately.

Second, as in SimGT2003, the complete source code for the robots is compiled into Robot-
Control and encapsulated in “simulated robots”. The debugging interfaces of RobotControl func-
tion both for the simulated and the physical robots. So it is possible to test source code without
switching to a robot. The virtual robots can receive their data from a simulator (which was
adapted from SimGT2003), a real robot, or a log file. The GermanTeam could develop its vi-
sion modules long before they had a wireless network connection to the robot by testing the
algorithms on log files.

5.2. ROBOTCONTROL 77

Figure 5.2: The RobotControl application

In addition, a variety of other helper tools is integrated into the application, e. g. for color
calibration or for copying data to the memory sticks.

Almost all of RobotControl’s functionality was programmed into toolbars and dialogs. There
are simple interfaces to create and embed them in the application, so that many team members
could easily program graphical user interfaces for their debugging needs.

This is also one of the two main differences between RobotControl and SimGT2003: In
SimGT2003 most of the interaction with the program is done using a text console whereas in
RobotControl many graphical user interfaces exist. As many tasks require a graphical user inter-
face, e. g. creating color tables, SimGT2003 provides only a small portion of the functionality of
RobotControl.

The second difference is that RobotControl can only communicate with exactly one simu-
lated and one physical robot at the same time. Although it can simulate up to 8 robots as well
as keep network connections to up to 8 real robots simultaneously, only one of each kind can
be “connected” to the application. Only game manager commands can be sent to all of them
simultaneously.

78 CHAPTER 5. TOOLS

to physical robot from physical robot

to simulated robot

to GUI

from simulated robot

physical
robots

simulated
robots

log player

dialogs &
tool bars

RobotControl

Figure 5.3: Data flow in the RobotControl application. The gray boxes denote the main message queues.

RobotControl has a very modular structure (cf. Fig.5.3): it almost only consists of the sim-
ulated robots, a simulator, the tool bars, the dialogs, an interface to the wireless network, and
message queues (cf. Sect.E.1) between these units. Dialogs and toolbars only communicate via
the queues.

To send data to the robot or to the simulated robot, messages are put into thequeue to physical
robot, queue to all physical robots, queue to simulated robotor queue to all simulated robots.
Thequeue to physical robotcan be sent to the robot via the wireless network or by writing the
queue onto a memory stick. Thequeue to simulated robotis sent to the simulated robot that is
currently connected to the application. One can change, which of the 8 robots shall be connected.
Messages from the robot can be received over the wireless network or from a log file that was
written by the robot onto the memory stick. They arrive in thequeue from physical robot. From
there, some of the messages are first sent to the simulated robotqueue to simulated robot, some
directly to thequeue to GUI. All messages from the currently connected simulated robot arrive
in thequeue from simulated robotand later in thequeue to gui. At last, the messages in thequeue
to GUI are distributed among the dialogs and toolbars. Thelog player records messages from
thequeue from physical robotand stores them there again when playing a log file.

5.3 Router

It is desirable to exchange data between the tools running on the PC and the robots. Last year,
a wireless network was introduced into the Sony Legged Robot League. On the side of the PC,
only Linux and Cygwin are supported platforms for the wireless communication. However, the

5.3. ROUTER 79

GermanTeam uses tools running natively under Microsoft Windows. Therefore, they have no
direct access to the new wireless communication capabilities of the robots.

That is the point where theRoutercomes into play. It functions as a mediator between the
physical robots and the native Windows tools. On the one hand, it communicates with up to eight
robots using thetcpGateway. On the other hand, it exchanges data with the Windows tools via
a different IP-port for each robot. The data transferred aremessage queues, one from the PC to
each robot, and a second back from each robot to the PC.

That way, RobotControl can send a message queue to the robot by sending it to the appro-
priate IP-port (by convention the least significant byte of the robot’s IP-address plus 15000). The
Router will receive the queue and forward it to thetcpGatewayon the PC. Then the gateway will
send the queue to thetcpGatewayon the robot via the wireless network. The latter will again
forward the message queue to theDebugprocess on the robot. The other way round, the robot
can send a message queue to RobotControl.

start.bash. The router needs a couple of configuration files to work properly, namelycon-
nect.cfg, object.cfg, andport.cfg. These files are small and quiet easy to edit manually as long
as one only wants to communicate with one robot using thetcpGateway. But they are hard to
read and maintain for multiple robots, e. g. for two robot teams of four players each, complete
point-to-point connections between all robots of the same team,roboCupGameManagercontrol
for these eight robots, and debug connections to the PC.

Because these configuration files have to be changed to adapt to different conditions (smaller
number of robots, only one team, noroboCupGameManager), the scriptGT2003\Bin\start.bash
automates that work. A message such as the following is generated by the script after its first
execution, i. e. whenconnect.cfg, object.cfg, andport.cfgdo not exist. It explains the usage of
the script:

usage: start.bash [-gm] [-release] [-cmu] [IP | (subnet
[auto | (A1 [A2 [A3 [A4 [B1 [B2 [B3 [B4]]]]]]])])]
where -gm starts the RoboCupGameController

-release only uses connections for release sticks
(no MessageQueues for RobotControl)

-cmu starts the last team in CMPack’02 mode
subnet is a subnet equal for all robots followed by .Ai or .Bi
Ai are own robot IP addresses
Bi are opponent robot IP addresses

example1: start.bash //uses old $PORTCFG
example2: start.bash -gm 10.0.1.100
example3: start.bash 10.0.1 100 101
example4: start.bash 10.0.1 auto
example5: start.bash -gm -release 10.0.1 10 11 12 13 20 21 22 23

If the script is parameterized correctly, it performs all tasks required to start the router:

• Stop previous instances of theipc-daemonand theoobjectManagerwith stop.bash,

80 CHAPTER 5. TOOLS

• start a new instance of theipc-daemon,

• start theoobjectManagerwhich will start the router, and, if desired, theroboCupGameM-
anager,

• and kill theipc-daemonafter the termination of theoobjectManager.

The CMPack’02 mode compensates for the lack of the ability of the current tcpGateway to
send messages received from different subjects (senders) to a single observer (receiver). It also
generates the configuration files required to run CMPack’02. Thus, the GermanTeam was able to
perform test games against the world champion of 2002.

stop.bash. As already mentioned above, there is second script calledstop.bashin the same
directory that removes all processes started bystart.bash, including theipc-daemonand its tem-
porary files.

5.4 Motion Net Code Generator

The Motion Net Code Generatorparses a set of motion specifications described in a special
language and compiles it into C code. The parser checks the motion set defined for consistency,
i. e., it checks for missing transitions from one motion to another and for transitions to unknown
motions.

With this tool it is possible to generate motions that consist only of fixed sequences of joint
positions quickly and easily. This is the case for all kicks implemented by the GermanTeam as
well as some other motions including, e. g., head stand and ball holding. The resulting C code is
integrated into theSpecialActionsmodule (cf. Sect.3.9.2).

TheMotion Net Code Generatoralso generates an xml representation of all motions allowing
new motions to be used in the behavior (cf. Sect.3.8.1) without having to specify them in more
than one place.

For interactively testing motions and their transitions, RobotControl provides a dialog to
request specific motions. The requested motion and the transition from the current one will be
executed immediately (cf. Sect.J.5.2). Furthermore, a second dialog is provided to transmit new
motion descriptions to the robot and execute them without the need to recompile anything (cf.
Sect.J.5.4).

Motion Description Language. The specification for a single motion consists of the descrip-
tion of the desired action and the definition of a set of transitions to all other motions. This is
simplified by using groups of motions, e. g., it is possible to define that the transition from motion
X to any other motion always goes via the motionY .

As most simple motions (such as kicking or standing up) can be defined by sequences of
joint data vectors, a special motion description language was developed, in which all our special
motions are defined. Programs in this language consist of transition definitions, jump labels, lines
defining motor data, and lines defining PID data. A typical data line looks like this:

5.5. EMON LOG PARSER 81

˜ ˜ ˜ ˜ ˜ ˜ -350 -190 1750 -350 -190 1750 -1840 -40 2500 -1840 -40 2500 1 25

The first three values represent the three head joint angles, the next three values describe the
mouth and the tail angles, followed by the twelve leg joint angles, three for each leg, all angles
given in milliradians. The last but one value decides whether specified joint angles will either be
repeated or interpolated from the current joints angles to the given angles. The last value defines
how often the values will be repeated or over how many frames the values will be interpolated,
respectively. The tilde character in the first six columns means that no specific value is given,
i. e. “don’t care”. This has special importance for the head joint angles as it allows head motion
requests to be executed.

5.5 Emon Log Parser

The Perl scriptemonLogParserprovided by the Open-R SDK samples was considerably ex-
tended to retrieve as much information as possible from the log files calledemon.loggenerated
by the Emergency Monitor.

The script GT2003/Bin/emonLogParser.pluses mipsel-linux-readelf and mipsel-linux-
objdumpto output an assembler dump around the crashing opcode and around the caller of
that routine. The crashing line is highlighted. This is especially useful if the crash happened in
unoptimized binaries with debug symbols. Furthermore the call stack is analyzed to give an idea
of the order of calling methods.

The script has to be called by:

Bin/emonLogParser.pl <emon.log> <configuration>

So, the path to the emon.log of the crash has to be provided as well as the name of the
configuration of GT2003 that caused the crash, e. g.Debug, Releaseor DebugNoDebugDrawing.
This will find the correct*.nosnap.elfin the build directories. It can easily be modified to be used
with binaries of other teams. Of course it is only useful to provide the binaries that caused the
crash.

Chapter 6

Conclusions and Outlook

The GermanTeam now exists for more than two years. The general architecture developed in
2002 has proven to be sustainable, still satisfying our needs. Only a few changes were applied
during the last year. Switching from the Greenhills-based environment to the gcc-based envi-
ronment required only minor changes in the platform dependent part. The behavior architecture
XABSL was used by all sub-teams at the German Open, and again in Padova. It has been proven
to be a flexible and powerful way to describe behaviors.

In 2003, the main innovations by the GermanTeam were the introduction of using edges for
self-localization, detecting and modeling obstacles to improve game play, using potential fields
to implement basic behaviors, and using dynamic role assignments. Additional innovations, not
used during the games this year, but that will hopefully be used next year, are the automatic color
calibration, and the detection of collisions.

Despite all the problems that arise when software is developed by a group of persons dis-
tributed over different towns, we recommend to build up national teams as the GermanTeam is
one. Having enough participating team members, different solutions for single tasks can be em-
ployed and compared to each other. The different scientific backgrounds of the members from
different universities enriched the project very much. At last, the rivalry between the single teams
results in better solutions for single tasks.

Altogether we were quite satisfied with the results we achieved, and we are continuing that
work. We hope to reach even better results in the competitions next year in Lisbon.

6.1 The Competitions in Padova

This year, the GermanTeam was quite prepared when it arrived in Padova. Many new features
were added to the code, in test games against the code of the previous world champion, CM-
Pack’02, results of up to 7:0 were achieved, and the main parts of the challenges were already
solved. However, although first test games ended as expected (10:0 against Uppsala, 7:0 against
Osaka, both in 10 minutes), it turned out that there was still a lot to do. The wireless network was
very unreliable in Padova, resulting in poor coordination between the robots. Many actions, such

82

6.2. FUTURE WORK 83

Round Robin
GermanTeam – Austin Villa 9:0
GermanTeam – UTS Unleashed!2:2
GermanTeam – UPennalizers 3:1
GermanTeam – Asura 5:0
Quarter Final
GermanTeam – CMPack’03 2:2 (x:x+1)

Table 6.1: The results of the GermanTeam in Padova

as walking to the ball and kicking or changing roles, took too long. So the code was improved
from game to game.

The GermanTeam finished the round robin as winner of its group, even against the later
runner-up, the UPennalizers. In the quarter final, the GermanTeam lost in a 29 minutes penalty
shootout against CMPack’03. However, the GermanTeam won the RoboCup Challenge with 70
out of 72 possible points.

The results of the actual games are shown in table6.1. Please note that the actual number of
goals scored in the penalty shootout is not known.

An important point is also that members of the GermanTeam were accepted for four talks in
the RoboCup Symposium. The groups involved in the GermanTeam even contributed an overall
number of six talks and one poster to the Symposium, including the paper that won the scientific
award.

6.2 Future Work

The GermanTeam owns a powerful code basis for the next year’s work. For the RoboCup German
Open in April 2004, each of the four universities will again set-up its own team based on the
shared code basis with own solutions for different tasks. From their different research interests,
the teams will also focus on different topics next year.

6.2.1 Humboldt-Universität zu Berlin

An important aspect of our future work will be the application of case based reasoning to robot
control architectures and machine learning. The efforts will be pursued not only in the Sony
Legged League but also in the Simulation League.

A behavior architecture called the “Double Pass Architecture” [4] has already been imple-
mented in the Simulation League and will be applied to the Sony Legged League. It provides
for long term “deliberator” planning and short time “executor” reactions. The executor allows
quick reactions even for the options on the higher levels in the option hierarchy. This is made
possible by using the reduced search space defined prior by the deliberator. It implements a kind
of bounded rationality. Therefore, the state machine concept has to be extended for the two sep-
arate passes of the deliberator and the executor (the name “Double Pass Architecture” refers to

84 CHAPTER 6. CONCLUSIONS AND OUTLOOK

these two passes). Many useful behaviors have been developed. Selecting the appropriate one
becomes an increasingly difficult task. It becomes even more difficult if behaviors are combined
to more complex ones, such as they can be described in the option hierarchy. TheExtensible
Agent Behavior Specification Language(XABSL) will be extended and adopted to that.

Another prerequisite of useful decisions is a reliable world model. In case of the Sony AIBO,
knowledge about the environment is exclusively derived from the camera image. With this lim-
ited field of view, information gathering has to be optimized. First steps in this direction have
been taken by actively scanning for landmarks using world model information (i. e. pointing the
camera in a direction where a landmark should be according to the world model). A tighter cou-
pling of information gathering and information processing turned out to be desirable rather then
having the two run as separate processes. Active vision and attention based vision approaches
will be examined. World and object modeling will be extended to make use of negative infor-
mation (e. g. the ball was not seen) and to actively search for information that is needed (e. g.
have the robot look for a specific landmark that is needed to clarify the robot’s position on the
field). Having both, complex behavior and reliable world model, the correspondence of situa-
tions and most appropriate actions have to be resolved. This will be done by methods of case
based reasoning. Cases describe typical behavior in typical situations (e. g. standard situations).
The recent situation is matched against the case base, and the most similar cases are analyzed for
proposals of behaviors. The behaviors are adapted according to the recent situations. Problems to
be solved in the next steps include description of cases, definition of useful similarity measures
and adaptation methods.

In this year’s RoboCup symposium we presented and auto-calibrating vision system for the
RoboCup environment [10]. We were not able to use it in the competition because it did have
problems in certain situations. However we feel confident to have the system running reliably
to use it next year. The system uses knowledge about the robot’s environment in the form of
heuristics and qualitative color calibration for image processing.

The obstacle model which proved highly successful in this years RoboCup challenge (see3.5,
4.3) will be integrated more extensively into the behaviors of the agent. This may also require a
more abstract, qualitative modeling of the agent behavior. Similarly, the newly gained possibility
to detect collisions of the robot with its surroundings and other robots will be reflected in agent
behaviors.

Furthermore, we are trying to improve the motion modeling of the robot, the long term goal
being to develop a full motion model of the robot: a model that integrates robot locomotionand
robot (special) actions such as kicking. By this we hope to achieve smoother, better controlled,
and overall quicker and more livelike robot movement.

6.2.2 Technische Universiẗat Darmstadt

The team in Darmstadt will continue their efforts towards a complete, efficient, and validated
simulation of the four-legged robot’s dynamics and its use for dynamic off-line optimization,
on-line stabilization, and control of dynamic walking and running gaits. For the behavior control
of cooperating robots as well as for object recognition it is planned to investigate alternative
approaches to the already existing ones.

6.2. FUTURE WORK 85

Figure 6.1: The OpenGL-based version of SimRobot. The picture shows a typical scene and the camera
images of four simulated robots.

In 2001, the GermanTeam was able to measure the true positions of the robots on the field
with a camera mounted at the ceiling. We propose to reintegrate such a mechanism in GT2004
at least for one half of the field. By this different localization methods can be compared on
an empiric level. Besides with the exact data not only the self-localization but also a number of
other algorithms can be tested and even automatically learned. This includes localization of other
robots, the ball, odometry, and others.

6.2.3 Universiẗat Bremen

As the use of the Markov-localization was very successful in the GermanTeam 2003, probabilis-
tic approaches will also be introduced to model the location of the ball and of the opponents.
In contrast to the field of self-localization, in which the sensor resetting approach by [11] can
only be used if an estimation of a global pose can directly be derived from the sensor readings,
the sensor resetting method seems to be a promising approach for the probabilistic modeling of
the locations of the opponents and the ball in a robot-centric system of coordinates. In addition,
work that was done on tracking people [17] can be integrated in such an approach. The modeling
of the world state will also exploit the ability of the robots to communicate.

After such a probabilistic world model has been realized, it will be investigated, how the
uncertainties can influence the behavior, or whether even a probabilistic behavior control can be
implemented. The German Open 2004 will be the test-bed for such an approach.

In addition, the new, OpenGL-based version of SimRobot will replace the previous version.
As it uses the hardware acceleration of modern graphics hardware, it is faster than the version
currently used which results in higher frame rates in the generation of camera images, and it also
prepares the GermanTeam for the simulation of the hires-camera of the new ERS-7.

86 CHAPTER 6. CONCLUSIONS AND OUTLOOK

6.2.4 Universiẗat Dortmund

We will continue in developing a robust and detailed distributed world model and collective
behavior. Therefore, we will enhance our world-model interchange protocol (WIP), that allows
including and excluding single robots from the world-model interchange as well as from collec-
tive behavior transparently. Finally, we will build a peer-to-peer like network functionality, such
that every robot can share sensor information and computing power with the rest of the team.

Chapter 7

Acknowledgments

The GermanTeam and its members from Berlin, Bremen, Darmstadt, and Dortmund gratefully
acknowledge the continuous support given by the Sony Corporation and its Open-R Support
Team. The GermanTeam thanks the organizers of RoboCup 2003 for travel support. The team
members from Berlin and Bremen thank the Deutsche Forschungsgemeinschaft (DFG) for fund-
ing parts of their respective projects. The team members from Dortmund thank the Deutsche
Arbeitsschutz Ausstellung (DASA) and the Thyssen Krupp AG for their effective cooperation.
Further, we thank the Deutscher Akademischer Austauschdienst (DAAD), Lachmann & Rink
GmbH, the Dortmund Project, the Freundegesellschaft der Universität Dortmund e.V., and the
Faculty of Information Science for travel support.

The members of the GermanTeam 2003 also want to thank the members of the GermanTeam
2002 for creating the foundation for the continuing success of the GermanTeam and for writing
the previous year’s team report [3] that was the basis for this document.

The GermanTeam uses a variety of code libraries and tools and also likes to thank the authors
of them:

• A code library called “Sizing Control Bars” from Cristi Posea.
(http://www.datamekanix.com) is used for the dialogs in RobotControl.

• A code library for “Internet Explorer-like toolbars” from Nikolay Denisov (nick@actor.ru)
is used.

• The code library “Grid Control” from Chris Maunder (cmaunder@mail.com) is used for
the ”Settings” dialog.

• Doxygen (http://www.doxygen.org/) is used for the source documentation.

• The “dot” tool from the GraphViz collection (http://www.graphviz.org) is used for behav-
ior documentation purposes.

• The LibXSLT (http://xmlsoft.org/XSLT/) library is used used for behavior documentation
purposes.

87

88 CHAPTER 7. ACKNOWLEDGMENTS

• This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

• This product includes DOTML developed by Martin Lötzsch (http://www.martin-
loetzsch.de/DOTML).

• This product includes XABSL developed by Martin Lötzsch (http://www.ki.informatik.hu-
berlin.de/XABSL).

• This product includes SimRobot developed by Thomas Röfer, Uwe Siems, Christoph Her-
wig, and Jan Kuhlmann (http://www.informatik.uni-bremen.de/simrobot).

Appendix A

Installation

The GermanTeam uses Microsoft Windows as development platform. The package provided was
used under Windows 2000 and Windows XP. The center of the development process is Microsoft
Visual Studio; all parts of the system are edited and built with this software.

A.1 Required Software

• Microsoft Windows 2000/XP

• Microsoft Visual C++ 6.0 SP5 (can be installed anywhere)

• Cygwin 1.3.22 (can be installed anywhere). Version 1.5.x does not work with wireless!

• CygIPC 1.13-2 (unpack it to Cygwin-Path/). Do not install it as a service!

• gtk+ 1.3 (unpack it to Cygwin-Path/)

• Open-R SDK 1.1.3-r2 and MIPS developer tools with self-built gcc-3.3.1 (Cygwin-Path
/usr/local/OPENR SDK)

The system path and the path of Visual Studio (extras/options/directories/executable files)
must include...\cygwin\bin;...\cygwin\lib; .

A.2 Source Code

The source code has to be unpacked anywhere in a directoryXXX\GT2003. Without white spaces
in XXX. There are several subdirectories under this root:

Bin contains the binaries of the programs running on the PC after they have been compiled.

Build contains all intermediate files during compiling.

89

90 APPENDIX A. INSTALLATION

Config contains the configuration files. Most of them will also be copied toOPEN-R/APP/CONF
on the memory stick.

Doccontains this document1 and the documentation generated byDoxygenfrom the source files.

Make contains makefiles, batch files, and Visual C++ project files. TheGT2003.dswis located
here, i. e. the file that has to be launched to open Visual C++.

Src contains all source files of the GermanTeam.

Util contains additional utilities, e. g.Doxygen.

The directorySrccontains subdirectories that can be grouped in two categories: on the one
hand, some directories contain code that runs on the robots, on the other hand, other subdirecto-
ries hold the code of the tools running on the PC.

A.2.1 Robot Code

Modulescontains source files implementing the modules of the robot control program. For each
module there exist an abstract base class, one or more different implementations, and, at least if
there are multiple implementations, a module selector that allows switching between the different
implementations.

Platform contains the platform dependent part of the robot code. There exist three subdirecto-
ries containing the platform specific implementations forAperios, Win32, andLinux (Cygwin).
A fourth directoryWin32Linuxcontains implementations that are shared between Cygwin and
Windows.Platform itself contains some header files that automatically include the code for the
right platform.

Processescontains one subdirectory for each process layout, and each of these subdirectories
contains one implementation file for each process (*.cpp), the object.cfg, the connect.cfg, and
the.ocf-file required for the process layout.

Representationscontains source files implementing classes the main purpose of which is to store
information rather than to process it. Objects of classes defined here are often communicated
between different modules, processes, or even different robots.

Tools contains all that does not fit into the other categories. The mathematical library (cf.
Sect.2.1.4) can be found here, the implementation of streams (cf. App.D), and message queues.
However, the code of the Windows tools such as RobotControl cannot be found here.

1Or at least it is a good idea to place it there.

A.3. THE DEVELOPER STUDIO WORKSPACE GT2003.DSW 91

A.2.2 Tools Code

Dependcontains the code of the tool (cf. Sect.2.2.4.1) to create the dependencies for all robot
builds as well as a few scripts to create dependencies for RobotControl and SimGT2003, too,
and scripts to create Visual Studio project files from these dependencies (cf. Sect.2.2.4.4).

MotionNetCodeGeneratorcontains the code of the tool (cf. Sect.5.4) to create new motions,
i. e. special actions (cf. Sect.3.9.2).

RobotControl contains the code of the tools with the same name (cf. Sect.5.2).

Router contains the code of the mediator between the robots and the Windows-based tools such
as RobotControl (cf. Sect.5.3).

SimRob95 contains SimRobot, a kinematic robotics simulator. It is the framework for
SimGT2003 (cf. Sect.5.1) and the simulation integrated into RobotControl (cf. Sect.5.2).

A.3 The Developer Studio Workspace GT2003.dsw

The Developer Studio Workspace GT2003.dsw contains several projects, most of them in differ-
ent configurations:

Documentation. This project creates the documentation of the code usingDoxygen. Documen-
tation can be generated for the projectsGT2003, RobotControl, andSimGT2003. Please note that
legacy code such asSimRobotdoes not supportDoxygenand generates no proper help files.

GT2003creates the code for the robots. It can be selected betweenRelease(optimized, no de-
bugging information and support),Debug(full debugging information and support),Debug no
DebugDrawings(debugging information and support, but no DebugDrawings to reduce perfor-
mance impacts), andDebug no WLAN(debugging information and support, but memory stick
and console are used instead of wireless lan). In addition, a process layouts (at the moment only
CMD) can be selected.

The result of the build process can be copied to a memory stick by callingcopyfiles.bash.
Please note that this file assumes that the memory stick can be found in driveE: if your HOST-
NAME is not handled incopyfiles.bash. Try copyfiles.bash - -helpto see all options. Instead of
calling copyfiles.bashmanually, you can use the WLAN dialog of RobotControl (cf. Sect.J.2.5)
to ensure that the same configuration parameters are used in RobotControl and on the memory
stick.

92 APPENDIX A. INSTALLATION

RobotControl can be built in different configurations. The executable will be copied to
GT2003\Bin. TheWin32 CMD Releaseconfiguration uses statically linked MFC libraries, the
Debug configurations dynamically linked ones. The configurationWin32 Debug Optimizeduses
G6 optimization, but does not supportEdit and Continue. Win32 Debugsupports it but is not
optimized.

Router. The router (cf. Sect.5.3) can only be built as a debug or a release version. The re-
sult will be copied toGT2003\Bin, together with several executables from the Open-R for
Linux/Cygwin release. Note that only the debug version checks for errors during the initialization
of the program.

SimGT2003currently only supports a single configuration. The executable, together with the
help file, will be copied toGT2003\Bin.

The other projects generate libraries (GUI, SimRobot, SimRobotForRobotControl), source
code (SpecialActionsby executing MotionNetCodeGenerator), tools (Dependcf. Sect.2.2.4.1,
MotionNetCodeGeneratorcf. Sect.5.4), or preprocessed behavior (Xabsl2cf. Sect.3.8.1) re-
quired by at least one of the projects named above. There is no need to build them directly
because they will be built on demand. The only exception is the configurationDocumentationof
the projectXabsl2. It produces a pretty good documentation of the behavior.

Appendix B

Getting Started

If you have installed the required software and the source code we suggest you to follow the
introduction to GermanTeam’s code given in this section. Step by step it is explained how to use
the debug tool on the PC, how to play with the robots and how to let the robots play. In addition,
the main configuration files used by the robots are described.

B.1 First Steps with RobotControl

This debug tool of the GermanTeam provides a lot of possibilities. In this section the most use-
ful features and some impressive effects are presented. For a more detailed description see ap-
pendixJ.

B.1.1 Looking at Images

Image and Segmented image. Open theImage Viewer Dialog, theColor Table 64 Tooland the
Color Space Dialog. In theLog Player Toolbar, open a log file, e. g.Config\Logs\padova01.log
and click on theStep Forwardbutton a several times. In the bottom right corner of RobotControl
the name of the current log file and the current number of the message are displayed.

All images contained in the log file are displayed in theImage Viewerand in theColor Table
64 Dialog. The Color Table 64 Dialogshows the segmented image. TheColor Space Dialog
shows the colors of the YUV-cube used by the current image.

With clicks with the left and the right mouse buttons into one of the images in theColor Table
64 Dialog, you can modify the color table. Clicking and dragging with the left mouse button in
theColor Space Dialogchanges the point of view. With the context menu you can select to show
height maps of single channels of the image. Or you can display a 3D view of the current color
table. The image viewer has eight areas to display images. In the context menu of these areas
you can choose the image to be shown there, e. g. the raw image or a debug image such as the
imageProcessorGoals.

93

94 APPENDIX B. GETTING STARTED

Results of the Image Processing. Please make sure that in the toolbarSimulated Robotsthe
state for the first red robot is set toActive, generate images. If you have to change the state, press
theresetbutton afterwards. All images from the log files are not only displayed by the dialogs, but
also put into the image processor now. Each image contains position and rotation of the camera
relative to the body. This information was calculated by theSensorDataProcessoron the robot.
Therefore theSensorDataProcessoron the PC has to be switched off for the image processor to
work properly: in theSettings Dialogchange to the settingimages from robot. If that setting does
not exist, create a new one by pressing the new button while the default setting is selected. Then
change the local solution for theSensorDataProcessorfrom “Default” to “disabled”.

Several debug drawings illustrate how the image processor works. With the context menu
the drawings can be selected. Select “percepts: ball; flags; goals”, “image processor: ball”, and
“image processor: horizon” to see the horizon line in the image and how the flags, the goals, and
the ball are recognized. The color tableGT2003\Config\Padua\coltable.c64is adapted to the
log files from Padova. If you change something in the color table, you can see the effect on the
percepts immediately.

B.1.2 Discover the Simulator

The simulator provides the same data as a real robot would do. To see this, open the toolbar
Simulated Robots, theObject Viewer(i. e. press the button on the toolbarSimulated Robots) and
the Large Image Viewer. In the toolbarSimulated Robotspress thestart button. In theImage
Vieweryou can see the images the simulator provides.

In the Simulator Toolbarpress theback switchof the robot two times for the duration of a
second to start the robot. The robot is a goalie by default. If you move the ball in front of the
goal, you can see how the goalie behaves.

With theJoint Viewerdialog, you can visualize the joint and sensor data provided by the sim-
ulated robot. In the debug keys toolbar selectEdit table for local processes. Select the debug key
“sendJointData” and chooseAlways. Then select the debug key “sendSensorData” and choose
Always. With the context menu in the joint viewer select “Sensors: head” and “Actorics: Head”.
The line graphs show the values of the joints and the sensors while the robot looks to the left and
to the right alternately. Or try to select “Actorics: legFR” and deselect the values for the head.
Then you can see the joint data of the front right leg while the robot moves.

B.2 Playing Soccer with the GermanTeam

B.2.1 Preparing Memory Sticks

First of all you need a complete build of the Visual Studio project GT2003. If you don’t
have Visual Studio useMake\makeForRobot.batThe result of the build process will be in
GT2003\Build\MS. This directory contains all binaries and system configuration files, but not
our own configuration files.

B.2. PLAYING SOCCER WITH THE GERMANTEAM 95

Then you may want to change the player role, the team color, or the IP address, e. g. to prepare
memory sticks for two different robots. You can use theWLAN Toolbarof RobotControlfor that:
Press theAdd connectionbutton and fill in the settings as they are required for your wireless
environment. Then insert a memory stick in your memory stick-reader and presscp to copy all
data for a specific player. This callsGT2003\Make\copyfiles.bash.

You may have to edit that file, because driveE: is assumed to be the memory stick by default1.
If it is adapted to your needs you may call it by pressing one of thecp buttons inWLAN Dialog.
Then you get information about the configuration on the stick (team color, player role, WLAN
settings) to check whether writing was successful.

B.2.2 Establishing a WLAN Connection

After inserting a WLAN card into an AIBO, creating a memory stick as explained in sec-
tion B.2.1, inserting it into an AIBO and starting that robot, you should be able to ping the
robot. Its IP address was shown as the result of executingGT2003/Make/copyfiles.bash. The IP
addresses of the robot and the computer trying to ping it have to be in the same subnet, the ESSID
has to be the same as well as the (usage of) encryption. Furthermore you should use APMode
0 for ad hoc connections and APMode 1 or 2 when using an access point or a computer with
Windows XP for pinging the robot.

If ping works for all robots you want to use, you should start the router (cf. Sect.5.3) by
executingGT2003\Bin\start.bashwith the IP addresses of the robots as parameters. This will
enable you to establish a debug connection to one robot as well as the opportunity for all robots
of the same team to communicate with each other. The robots use point-to-point connections for
that. Each connection is visualized by a green or yellow LED, so if you want to start a complete
team of four robots, each should have 3 yellow and green LEDs switched on.

In some cases the Linux inter-process communication (IPC) for Cygwin is not very stable,
so if you recognize strange error messages when trying to start the router, abort it. Executing
start.bashagain might help. Due to restrictions of Cygwin you will not be able to establish
all connections for two complete teams including intra-team communication,RoboCup Game
Managercontrol and debug channels, but one and a half team should work fine.

B.2.3 Operate the Robots

Once all the robots are started, they are in the state “initial”. The red LEDs show the role of the
player:

1 red LED: Goalie

2 red LEDs: Defender

3 red LEDs: Striker 1
1If you use the option–forceyou should beabsolutely surethatcopyfiles.bashwill use the proper drive, because

it will format it without any question!

96 APPENDIX B. GETTING STARTED

4 red LEDs: Striker 2

Now you can start the router on the remote computer. If all the green LEDs are on, then
the robot has connections to all other robots. If not, then there are problems with the wireless
network.

Then you can use theRoboCup Game Managerby Sony or touch the back switches of the
robots to set them into the “ready” state. Both top LEDs of the robots blink alternating. Note that
the robots walk to their start positions on their own. If they walk around without arriving there,
you can press one of the pressure sensors on the head to stop them. If the robots arrived at their
start position, the tail LED blinks quickly in the team color. For thestriker1, you can set whether
the own team does the kickoff by using theRoboCup Game Manageror pushing the tail to the
left or to the right.

The game can be started with theRoboCup Game Manageror by touching the back switches
of the robots.

The robots can be stopped again with theRoboCup Game Manageror by pressing their back
switch for more than 1 second. They are in the “ready” state again then.

B.3 Explore the Possibilities of the Robot

In this section some nice “experiments” are described that demonstrate the possibilities of the
robot.

B.3.1 Send Images from the Robot and Create a Color Table

To have a more relaxed robot it is suggest to start the robot without pressing the back button to
keep it inplayDeadmode. In theDebug Keys Toolbartype “1” in the edit box and select the
buttonn times. Each time you pressSendan image is sent by the robot. Everything described in
sectionB.1.1for images from log files can now be done with “real” images.

You can create a color table based on these images using theColor Table 64 Tool. Have a
look at the segmented images from the log files from Padova ifPadua\coltable.c64is used. The
segmented images from your field should look the same way with the color table for your field
for the image processor to work correctly. Then overwritePadua\coltable.c64using the save
button.

B.3.2 Create Own Kicks

To create your own kicks use theMof Tester Dialog. In theSettings Dialogchange the solution
for the ModuleMotion Controlfrom Default to Debug.

Now you can move the legs of the robot to a desired position and they will stay as forced.
If you pressReadthe sensor data of each joint is read and transmitted to the dialog. Now move
the legs to the next position and pressReadagain. In this way you can record the whole kick or
another motion step by step. WithExecuteyou can execute the motion. For more details study
sectionJ.5.4.

B.4. CONFIGURATION FILES 97

B.3.3 Test simple behaviors

To test some simple behaviors, all modules have to work with the default solution. If you did
some experiments before, change to the “default” setting in theSettings Dialog.

Open theXabsl2 Behavior Tester Dialogand select “Test on robot”. Now you can see the
option activation path, the current basic behavior with its parameters, the current motion request
and the current values of the selected input symbols. If you move the ball in front of the robot
you can see how the value for “ball.seen.distance” changes.

B.3.3.1 Test Basic Behaviors

Basic Behaviors are the basic components of the behavior, here is a closer look at two of them.
With theXabsl Behavior Tester Dialog, you can test a basic behavior with the desired parameters.
In the top most drop down box you can find the basic behaviors below the separator.

To test the basic behavior that goes to the ball select “go-to-ball” in the combo box. In the
edit box for the first parameter type for example “300” and press the buttonSend request. If the
robot can see the ball it goes there and stops at a distance of 300 mm (center of ball to point
beneath the pan joint of the head). Now try different distances and see how the robot reacts. You
can also try to change the second parameter of this skill - the maximal speed when going to the
ball (mm/s).

With the basic behavior “go-to-point” you can see if the self-localization works. The first to
parameters specify thex and they position of the robot on the field. The unit of measurement is
millimeter, the origin of the system of coordinates is the center of the field. Thex-axis points to
the opponent goal. The third parameter specifies the desired angle of the robot at the destination
point. With the other combo boxes in theXabsl Behavior Tester Dialogyou can set the output
symbol for the “head-control-mode” to different values, for example “search-for-landmarks”,
search for ball or “search-for-ball” and study the effect to the accuracy of the localization.

B.3.3.2 Test Options

Options represent the higher level of the behavior. They also can have parameters. You can select
different options with the combo box at the top of theXabsl2 Behavior Tester Dialog. The options
are above the separator.

The option “go-to-ball-and-kick” is one of the most important options in the play-soccer
behavior. If you select this option you can perform the following tests. Place the ball behind
the robot. The robot will turn until it sees the ball then go there and kick to the direction of the
opponent goal. Put the ball somewhere on the field. The robot will go to the ball.

B.4 Configuration Files

The robots of the GermanTeam are configured using several configuration files. The files that
have to be adapted to be able to run the code of the GermanTeam are described in this section.
On the memory stick, all configuration files are located underMS/OPEN-R/APP/CONF.

98 APPENDIX B. GETTING STARTED

B.4.1 location.cfg

This text file contains the name of a subdirectory in the configuration directory. The subdirectory
contains location-dependent configuration information such as camera settings, the color table,
and the set of active solutions. Thelocation.cfgallows the members of the GermanTeam to store
several such settings in the common CVS repository (a set of settings for each sub-team), while
the only file that has to be changed locally is this one. If this file is not present or it is empty, the
camera.cfg, coltable.c64, andmodules.cfgare read from the main configuration directory, i. e.
MS/OPEN-R/APP/CONFon the robot andGT2003\Configon the PC. In the code release, the
file contains the name “Padua”, so the configuration files in that subdirectory are used.

B.4.2 coltable.cfg

The GermanTeam uses an 18-bit color table with 6 bits color depth for each of the YUV channels,
i. e. the two LSBs of each channel are dropped:

unsigned char colorClasses[64][64][64];

Each of the entries in the color table is one of the following color classes:

enum colorClass {noColor, orange, yellow, skyblue, pink,
red, blue, green, gray, white, black};

However, the color table in the binary filecoltable.c64is compressed. It has to be written by
a routine such as

unsigned char* colorTable = &colorClasses[0][0][0];
unsigned char currentColorClass = colorTable[0],
int currentLength = 1;
for(int i = 1; i < sizeof(colorClasses); ++i)

if (colorTable[i] != currentColorClass)
{

stream << currentLength << currentColorClass;
currentColorClass = colorTable[i];
currentLength = 1;

}
else

++currentLength;
stream << currentLength << currentColorClass << int(0);

B.4.3 camera.cfg

This file describes the camera settings. It must contain the settings that were active when the color
table was created. The binary file consists of three values (each four bytes and little endian):

B.4. CONFIGURATION FILES 99

enum whiteBalance {wb_indoor_mode, wb_outdoor_mode, wb_fl_mode};
enum gain {gain_low, gain_mid, gain_high};
enum shutterSpeed {shutter_slow, shutter_mid, shutter_fast};

B.4.4 player.cfg

With this text file, it is possible to set the team color and the initial role of a robot. Although
the robots perform dynamic role switching, all robots must have different initial roles, because
the roles are used for positioning before kickoffs and as fall-back if the wireless network is not
working.

// teamColor red | blue
teamColor blue
// playerRole goalie | defender | striker1 | striker2
playerRole striker2

B.4.5 robot.cfg

The vision module determines many distances to objects by intersecting a view ray with planes
that are parallel to the field. At least if objects are far away, the precision of such computations
depends on precision of the estimation of the pose of the camera relative to the field. It has turned
out that there are some variations between different robots in the relationship between the joint
angles measured and the real posture of the head. Therefore, therobot.cfgcontains correction
values for thetilt and theroll of the body of the robot2. Therobot.cfgcontains these corrections
for all robots of the GermanTeam, indexed by the MAC-addresses of the robots, e. g.:

[00022D1F626B]
bodyTiltOffset 0.06
bodyRollOffset 0

The goal of the calibration process is that a robot located in one goal, looking at the other
goal, will calculate thehorizonparallel to the field and on the height of the camera. This can
be checked by displaying camera images and thehorizon drawingin RobotControl. Using the
Debug Message Generator Dialog(cf. App. J.7.1) with “Body Offsets” selected, the correction
values can be directly entered into the edit field and sent to the robot, e. g. “0.06 0”. If the horizon
is display parallel to the field and in the vertical middle of the opponent goal (i. e. at a height of
approximately 15 cm), the values are correct. However, the robot will forget them. Therefore they
have to be entered manually into therobot.cfgunder the MAC-address of that robot afterwards.

Please note that the localization capabilities of the robots using theGT2003SelfLocatorde-
pend on these correction values.

2The two values are a first approach to compensate for the deviations. More correction values are required.
Hopefully, it will be possible to let the Aibos automatically calibrate themselves in the future.

100 APPENDIX B. GETTING STARTED

B.4.6 wlanconf.txt

Don’t forget to adapt thewlanconf.txtlocated inMS/OPEN-R/SYSTEM/CONFto the appropriate
network settings.

Appendix C

Processes, Senders, and Receivers

C.1 Motivation

In GT2001, there exist two kinds of communication between processes: on the one hand, Aperios
queues are used to communicate with the operating system, on the other hand, a shared memory
is employed to exchange data between the processes of the control program. In addition, Aperios
messages are used to distribute the address of the shared memory. All processes use a structure
that is predefined by Sony’s stub generator. This approach lacks of a simple concept how to
exchange data in a safe and coordinated way. The resulting code is confusing and much more
complicated then it should be.

However, the internal communication using a shared memory also has its drawbacks. First of
all, it is not compatible with the new ability of Aperios to exchange data between processes via
a wireless network. In addition, the locking mechanism employed may waste a lot of computing
power. However, the locking approach only guarantees consistence during a single access, the
entries in the shared memory can change from one access to another. Therefore, an additional
scheme has to be implemented, as, e. g., making copies of all entries in the shared memory at the
beginning of a certain calculation step to keep them consistent.

The communication scheme introduced in GT2002 addresses these issues. It uses Aperios
queues to communicate between processes, and therefore it also works via the wireless network.
In the approach, no difference exists between inter-process communication and exchanging data
with the operating system. Three lines of code are sufficient to establish a communication link.
A predefined scheme separates the processing time into two communication phases and a calcu-
lation phase.

C.2 Creating a Process

Any new process has to be part of a specialprocess layout. Process layouts group together differ-
ent processes that make up a robot control program, and they are stored in subdirectories under
GT2003\Src\Processes. Process layouts are named after the processes that exist in them, and in
fact, in 2003 there was only one layout, namelyCMD that consists of the processesCognit(ion),

101

102 APPENDIX C. PROCESSES, SENDERS, AND RECEIVERS

Motion, andDebug. An Aperios process is allowed to have a name with a maximum length of
eight characters. To create a new process, one has to think such a name up (in fact afull name
and ashort name(up to eight characters)

• insert a new line intoGT2003\Src\Processes\processLayout\object.cfg, following the
format/MS/OPEN-R/APP/OBJS/shortName.bin,

• insert a line inGT2003\Src\Processes\processLayout\processLayout.ocf starting with#
objectmappingfollowed by theshort nameand thefull name,

• create a newobjectline in the same file using theshort name,

• create a.cppfile in GT2003\Src\Processes\processLayout with the full name,

• and, insert that source file in the GT2003 project both under
GT2003\Processes\processLayout andRobotControl\SharedCode\Processes\processLayout
in the Microsoft Developer Studio.

The new source file must include “Tools/Process.h”, derive a new class fromclass Process,
implement at least the functionProcess::main(), and must instantiate the new class with the
macroMAKE PROCESS. As an example, look at this little process1:

#include "Tools/Process.h"

class Example : public Process
{

public:
virtual int main()
{

printf("Hello World!\n");
return 0;

}
};

MAKE_PROCESS(Example);

The process will print “Hello World” once. If the functionmain()should be recalled after a
certain period of time, it must return the number of milliseconds to wait, e. g.

return 500;

to restartmain()after 500 ms. However, ifmain() itself requires 100 ms of processing time,
and then pauses for 500 ms before it is recalled, it will in fact be called every 600 ms. If this is
not desired,main()must return a negative number. For instance,

1Note that the examples given here will not compile, because the debugging support required byclass Process
is missing. One can derive fromclass PlatformProcessinstead, naming themain-functionprocessMain.

C.3. COMMUNICATION 103

return -500;

will ensure a cycle time of 500 ms, as long asmain() itself does not require more than this
amount of time.

Note that if main returns 0, it will only be recalled if there is at least one blocking receiver
or at least one active blocking receiver (cf. next section). Otherwise, the process will be inactive
until the robot will be rebooted.

C.3 Communication

The inter-object communication is performed bysenders andreceivers exchangingpackages.
Packages are normal C++ classes that must bestreamable(cf. the technical note on streams in
appendixD). A sender contains one instance of a package and will automatically transfer it to a
receiver after the receiver requested it and the sender’s member functionsend()was called. The
receiver also contains an instance of a package. Each data exchange will be performed after the
functionmain()of a process has terminated, or immediately when the functionsend()is called. A
receiver obtains a package before the functionmain()starts and will request for the next package
after main() was finished. Both senders and receivers can either be blocking or non-blocking
objects. The functionmain() will wait for all blocking objects before it starts, i. e. it waits for
blocking receivers to acquire new packages, and for blocking senders to be asked to send new
packages.2 main()will not wait for non-blocking objects, so it is possible that a receiver contains
the same package for more then one call ofmain().

C.3.1 Packages

A package is an instance of a class that is streamable, i. e. that implements the<< and>>
operators for the classesOut andIn, respectively. So, an example of a package is

class NumberPackage
{

public:
int number;
NumberPackage() {number = 0;}

};

Out& operator<<(Out& stream,const NumberPackage& package)
{

return stream << package.number;
}

In& operator>>(In& stream, NumberPackage& package)

2Note that under RobotControl, a process will be continued when a single blocking event occurs. This is currently
required to support debug queues.

104 APPENDIX C. PROCESSES, SENDERS, AND RECEIVERS

{
return stream >> package.number;

}

Note also that it is a good idea to provide a public default constructor.
A special case of packages are Open-R packages:

• Packages that are received from the operating system must provide a streaming opera-
tor that reads exactly the format as provided by Open-R. The packages are all defined in
<OPENR/ODataFormats.h>. However, the data types provided there do not reflect the
real size of the objects, they are only headers. Therefore, new types must be declared that
have the real size of the Open-R packages. This size can be determined from theirvector-
Info.totalSizemember variable. The size is constant for each type, but it may vary between
different versions of Open-R. Such data types are only required to implement the streaming
operators, they are not needed elsewhere.

• Packages that are sent to the operating system require special allocation operators. There-
fore, special senders (cf. next section) were implemented that allocate memory using the
appropriate methods, and then use these memory blocks for the communication with the
operating system.

C.3.2 Senders

Senders send packages to other processes. A process containing a sender forNumberPackage
could look like this:

#include "Tools/Process.h"

class Example1 : public Process
{

private:
SENDER(NumberPackage);

public:
Example1() :

INIT_SENDER(NumberPackage,false) {}

virtual int main()
{

++theNumberPackageSender.number;
theNumberPackageSender.send();
return 100;

}
};

C.3. COMMUNICATION 105

MAKE_PROCESS(Example1);

The macroSENDERdefines a sender for a package of typeNumberPackage. As the second
argument is false, it is a non-blocking sender. Macros asSENDERandRECEIVERwill always
create a variable that is derived from the provided type (in this caseNumberPackage) and that
has a name of the formtheTypeSenderor theTypeReceiver, respectively (e. g.theNumberPack-
ageSender).

Packages must always explicitly be sent by calling the member functionsend(). send()marks
the package as to be sent and will immediately send it to all receivers that have requested a
package. However, each time the functionmain()has terminated, the package will be sent to all
receivers that have requested it later and have not got it yet. Note that the package that will be
sent has not necessarily the state it had when callingsend(). As packages are not buffered, always
the actual content of a package will be transmitted, even if it changed since the last call tosend().

As the communication follows a real-time approach, it is possible that a receiver misses a
package if a new package is sent before the receiver has requested the previous one. The ap-
proach follows the idea that all receivers usually want to receive the most actual packages. The
only possibility to ensure that a receiver will get a package is to only send it, when it already has
been requested. This can be realized by either using a blocking sender, or by checking whether
the sender has been requested to send a new package:theNumberPackageSender.requestedNew()
provides this information. Note: a sender can provide a package to more than one receiver.re-
questedNew()returns true if at least one receiver requested a new package. This is different from
a blocking sender: a blocking sender will wait forall receivers to request a new package!

C.3.3 Receivers

Receivers receive packages sent by senders. A process that reads the package provided byEx-
ample1could look like this:

#include "Tools/Process.h"

class Example2 : public Process
{

private:
RECEIVER(NumberPackage);

public:
Example2() :

INIT_RECEIVER(NumberPackage,true) {}

virtual int main()
{

printf("Number %d\n",theNumberPackageReceiver.number);
return 0;

}

106 APPENDIX C. PROCESSES, SENDERS, AND RECEIVERS

};

MAKE_PROCESS(Example2);

Here, the functionmain()will wait for the RECEIVER(i. e. the second parameter istrue), so
it will always print out a new number.

However, one thing is missing: Aperios has to know which process wants to transfer packages
to which other process. Therefore, the fileconnect.cfghas to be extended by the following line:

Example1.Sender.NumberPackage.S Example2.Receiver.NumberPackage.O

If more than one receiver is used in a process, the non-blocking receivers shall be defined
first. Otherwise, the packages of the non-blocking receivers may be older than the packages of
the blocking receivers. To determine whether a non-blocking receiver got a new package, call its
member functionreceivedNew().

Appendix D

Streams

D.1 Motivation

In most applications, it is necessary that data can be serialized, i. e. transformed into a sequence
of bytes. While this is straightforward for data structures that already consist of a single block
of memory, it is a more complex task for dynamic structures, as e. g. lists, trees, or graphs. The
implementation presented in this document follows the ideas introduced by the C++ iostreams
library, i. e., the operators<< and>> are used to implement the process of serialization.

There are two reasons not to use the C++ iostreams library for this purpose: on the one hand,
it does not guarantee that the data is streamed in a way that it can be read back without any special
handling, especially when streaming into and from text files. On the other hand, the iostreams
library is not fully implemented on all platforms, namely not on Aperios.

Therefore, theStreamslibrary was implemented. As a convention, all classes that write data
into a stream have a name starting with “Out”, while classes that read data from a stream start
with “In”. In fact, all writing classes are derived from classOut, and all reading classes are
derivations of classIn.

All stream classes derived fromIn andOut are composed of two components: One for read-
ing/writing the data from/to a physical medium and one for formatting the data from/to a specific
format. Classes writing to physical media derive fromPhysicalOutStream, classes for reading
derive fromPhysicalInStream. Classes for formatted writing of data derive fromStreamWriter,
classes for reading derive fromStreamReader. The composition is done by theOutStreamand
InStreamclass templates.

D.2 The Classes Provided

Currently, the following classes are implemented:

PhysicalOutStream. Abstract class

OutFile. Writing into files

107

108 APPENDIX D. STREAMS

OutMemory. Writing into memory

OutSize. Determine memory size for storage

OutMessageQueue.Writing into a MessageQueue

StreamWriter. Abstract class

OutBinary. Formats data binary

OutText. Formats data as text

Out. Abstract class

OutStream<PhysicalOutStream,StreamWriter>. Abstract template class

OutBinaryFile. Writing into binary files

OutTextFile. Writing into text files

OutBinaryMemory. Writing binary into memory

OutTextMemory. Writing into memory as text

OutBinarySize. Determine memory size for binary storage

OutTextSize. Determine memory size for text storage

OutBinaryMessage. Writing binary into a MessageQueue

OutTextMessage.Writing into a MessageQueue as text

PhysicalInStream. Abstract class

InFile. Reading from files

InMemory. Reading from memory

InMessageQueue.Reading from a MessageQueue

StreamReader. Abstract class

InBinary. Binary reading

InText. Reading data as text

InConfig. Reading configuration file data from streams

In. Abstract class

InStream<PhysicalInStream,StreamReader>. Abstract class template

InBinaryFile. Reading from binary files

InTextFile. Reading from text files

InConfigFile. Reading from configuration files

InBinaryMemory. Reading binary data from memory

InTextMemory. Reading text data from memory

D.3. STREAMING DATA 109

InConfigMemory. Reading config-file-style text data from memory

InBinaryMessage. Reading binary data from a MessageQueue

InTextMessage.Reading text data from a MessageQueue

InConfigMessage.Reading config-file-style text data from a MessageQueue

D.3 Streaming Data

To write data into a stream,Tools/Streams/OutStreams.hmust be included, a stream must be
constructed, and the data must be written into the stream. For example, to write data into a text
file, the following code would be appropriate:

#include "Tools/Streams/OutStreams.h"
// ...
OutTextFile stream("MyFile.txt");
stream << 1 << 3.14 << "Hello Dolly" << endl << 42;

The file will be written into the configuration directory, e. g.GT2003\Config\MyFile.txt on
the PC. It will look like this:

1 3.14000 Hello\ Dolly
42

As spaces are used to separate entries in text files, the space in the string “Hello Dolly” is
escaped. The data can be read back using the following code:

#include "Tools/Streams/InStreams.h"
// ...
InTextFile stream("MyFile.txt");
int a,d;
double b;
char c[12];
stream >> a >> b >> c >> d;

It is not necessary to read the symbolendlhere, although it would also work.
To make the streaming independent of the kind of the stream used, it could be encapsulated

in functions. In this case, only the abstract base classesIn andOutshould be used to pass streams
as parameters, because this generates the independence from the type of the streams:

#include "Tools/Streams/InOut.h"

void write(Out& stream)
{

stream << 1 << 3.14 << "Hello Dolly" << endl << 42;
}

110 APPENDIX D. STREAMS

void read(In& stream)
{

int a,d;
double b;
char c[12];
stream >> a >> b >> c >> d;

}
// ...
OutTextFile stream("MyFile.txt");
write(stream);
// ...
InTextFile stream("MyFile.txt");
read(stream);

D.4 Making Classes Streamable

Streaming is only useful if as many classes as possible are streamable, i. e. they implement the
streaming operators<< and>>. The purpose of these operators is to write the current state of
an object into a stream, or to reconstruct an object from a stream. As the current state of an object
is stored in its member variables, these have to be written and restored, respectively. This task is
simple if the member variables themselves are already streamable.

D.4.1 Streaming Operators

As the operators<< and>> cannot be members of the class that shall be streamed (because
their first parameter must be a stream), it must be distinguished between two different cases:
In the first case, all relevant member variables of the class are public. Then, implementing the
streaming operators is straightforward:

#include "Tools/Streams/InOut.h"

class Sample
{

public:
int a,b,c,d;

};

Out& operator<<(Out& stream,const Sample& sample)
{

return stream << sample.a << sample.b
<< sample.c << sample.d;

}

D.4. MAKING CLASSES STREAMABLE 111

In& operator>>(In& stream,Sample& sample)
{

return stream >> sample.a >> sample.b
>> sample.c >> sample.d;

}

However, if the member variables are private, the streaming operators must be friends of the
class. This can be a little bit complicated, because some compilers require the function prototypes
to be already declared when they parse thefriend declarations:

class Sample;
Out& operator<<(Out&,const Sample&);
In& operator>>(In&,Sample&);

class Sample
{

private:
int a,b,c,d;

friend Out& operator<<(Out&,const Sample&);
friend In& operator>>(In&,Sample&);

};
// ...

Another possibility to avoid these additional declarations would be to define public member
functions that perform the streaming and that are called from the streaming operators. However,
this would not be shorter.

If dynamic data should be streamed, the implementation of the operator>> requires a little
bit more attention, because it always has to replace the data already stored in an object, and thus
if this is dynamic, it has to be freed to avoid memory leaks.

class Sample
{

public:
char* string;
Sample() {string = 0;}

};

Out& operator<<(Out& stream,const Sample& sample)
{

if(sample.string)
return stream << strlen(sample.string) << sample.string;

else
return stream << 0;

}

112 APPENDIX D. STREAMS

In& operator>>(In& stream,Sample& sample)
{

if(sample.string)
delete[] sample.string;

int len;
stream >> len;
if(len)
{

sample.string = new char[len+1];
return stream >> sample.string;

}
else
{

sample.string = 0;
return stream;

}
}

D.4.2 Streaming usingread()and write()

There also is a second possibility to stream an object, i. e. using the functions Out::write() and
In::read() that write a memory block into, or extract one from a stream, respectively:

class Sample
{

public:
int a,b,c,d;

};

Out& operator<<(Out& stream,const Sample& sample)
{

stream.write(sample,sizeof(Sample));
return stream;

}

In& operator>>(In& stream,Sample& sample)
{

stream.read(sample,sizeof(Sample));
return stream;

}

This approach has its pros and cons. On the one hand, the implementations of the streaming
operators need not to be changed if member variables in the streamed class are added or removed.

D.5. IMPLEMENTING NEW STREAMS 113

On the other hand, this approach does not work for dynamic members. It will corrupt pointers to
virtual method tables if classes or their base classes contain virtual functions. Last but not least,
the structure of an object is lost (not the data) when it is streamed to a text file, because in the
file, it will look like a memory dump, which is not well readable for humans.

D.5 Implementing New Streams

Implementing a new stream is simple. If needed, a new medium can be defined by deriving
new classes fromPhysicalInStreamandPhysicalOutStream. A new format can be introduced by
deriving fromStreamWriterandStreamReader. Streams that store data must be derived from
classOutStream, giving aPhysicalOutStreamand aStreamWriterderivate as template parame-
ters, reading streams have to be derived from classInStream, giving aPhysicalInStreamand a
StreamReaderderivate as template parameters.

As a simple example, the implementation ofOutBinarySizeis given here. The purpose of this
stream is to determine the number of bytes that would be necessary to store the data inserted
in binary format, instead of actually writing the data somewhere. For the sake of shortness, the
comments are removed here.

class OutSize : public PhysicalOutStream
{

private:
unsigned size;

public:
void reset() {size = 0;}
OutSize() {reset();}
unsigned getSize() const {return size;}

protected:
virtual void writeToStream(const void*,int s) {size += s;}

};

class OutBinary : public StreamWriter
{

protected:
virtual void writeChar(char d,PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeUChar(unsigned char d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeShort(short d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeUShort(unsigned short d,

114 APPENDIX D. STREAMS

PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeInt(int d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeUInt(unsigned int d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeLong(long d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeULong(unsigned long d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeFloat(float d,PhysicalOutStream& stream)
{stream.writeToStream(&d,sizeof(d));}

virtual void writeDouble(double d,
PhysicalOutStream& stream)

{stream.writeToStream(&d,sizeof(d));}

virtual void writeString(const char *d,
PhysicalOutStream& stream)

{
int size = strlen(d);
stream.writeToStream(&size,sizeof(size));
stream.writeToStream(d,size);

}

virtual void writeEndL(PhysicalOutStream& stream) {};

virtual void writeData(const void* p,int size,
PhysicalOutStream& stream)

{stream.writeToStream(p,size);}
};

class OutBinarySize : public OutStream<OutSize,OutBinary>
{

public:
OutBinarySize() {}

};

Appendix E

Debugging Mechanisms

The software architecture of the programs and tools developed contains a rich variety of debug-
ging mechanisms which are described in detail in the following sections.

The following section describes in detail how messages are passed and how they can be
handled. The later sections describe a more high level approach and introduce macros simplify
the workflow. Also it is shown how to create drawings for visualization purposes. (You can skip
sectionE.1to get started quickly and come back to it at a later point.)

E.1 Message Queues

Besides the package-oriented inter-object communication with senders and receivers (cf.
Sect.C.3), message queuesare used for the transport of debug messages between processes,
platforms, and applications. They consist of a list ofmessages, which are stored and read using
streams (cf. App.D).

Writing Data to Message Queues. As almost all data types have streaming operators, it is
very easy to store them in message queues. When a message is written to a queue, amessage
id is added to identify the type x of the data. In addition, a time stamp is stored for every new
message. A typical piece of code looks like this:

#include "Tools/MessageQueue/MessageQueue.h"
// ...
Image myImage;
myMessageQueue.out.bin << myImage;
myMessageQueue.out.finishMessage(idImage);

int numOfBalls = 3;
myMessageQueue.out.text << "found " << numOfBalls << " balls."
MyMessageQueue.out.finishMessage(idText);

int a, b, c, d;

115

116 APPENDIX E. DEBUGGING MECHANISMS

myMessageQueue.out.bin << a << b;
myMessageQueue.out.bin << c << d;
myMessageQueue.out.bin.finishMessage(id4FunnyNumbers);

First an image is written in binary format to the queue. The type of the message isidImage.
Then the text”found 3 balls” is written in text format to the queue. The ididText marks the
message as unstructured text. At last, four integer values are written to the queue as a message
of the typeid4FunnyNumbers.

Transmitting Message Queues. Message queues are exchanged between processes such as
all other packages. They are also used for the transmission of debug messages via the wireless
network. They can be written to and read from logfiles. Messages can be moved to other queues
using

myQueue.copyAllMessages(otherQueue);
myQueue.moveAllMessages(otherQueue);

message >> otherQueue;

copyAllMessagescopies andmoveAllMessagesmoves all messages to another queue. The
third statement shows how a single message can be copied.

Distribution of Debug Messages. As all messages can be written in any order into a queue,
a special mechanism for distributing the message is needed. Amessage handlerdoes this job,
e. g.:

class MyMessageHandler : public MessageHandler
{

virtual bool handleMessage(InMessage& message);
};
// ...
bool MyMessageHandler::handleMessage(InMessage& message)
{

switch (message.getMessageID()
{
case idImage:

message.bin >> myImage;
return true;

case idText:
message >> otherQueue;
return true;

case id4FunnyNumbers;
message.bin >> a >> b >> c >> d;

E.2. GENERIC DEBUG DATA 117

return true;
default:

return false;
}

}
// ...
MyMessageHandler handler;
myQueue.handleAllMessages(handler);

The classMyMessageHandleris derived fromMessageHandler. In the implementation, for
everymessage idthe data is read differently from a queue. Whereas the image is just streamed
to a local member variable, the text message is copied to another queue. If a message has to be
copied to two targets, the functionresetReadPositioncan be used to reset the read position of the
source queue for the second read.

Instantiating Message Queues. The classMessageQueuehas two different mechanisms to
store the data into memory. On Windows and Linux platforms, a dynamic list is used. But on the
Open-R platform, dynamic memory allocations are expensive. Therefore the messages are stored
in a static memory buffer on that platform.

If the code containing aMessageQueueshall run on the Open-R platform, the size of the
queue in bytes has to be set using

MessageQueue queue;
queue.setSize(1000000); // ignored on Win32 and Linux

Message Queues and Processes.The classProcess, which is the base class for all processes,
already has the membersdebugInfor incoming anddebugOutfor outgoing debug messages. In
addition,Processis derived fromMessageHandlerso that every process can distribute debug
messages.

E.2 Generic Debug Data

This is a way to quickly send data to a module, especially if you only looking for a mechanism to
adjust internal parameters of a module. You can send an array of 10 double values to a module.
It is necessary to give the data an ID and to include message handling in the module. The ”Test
Data Generator Dialog” lets you send data easily to the module from within RobotControl.

First, you need to give create a new ID inSrc\Tools\Debugging\GernericDebugData.h:

...

enum GenericDebugDataID

118 APPENDIX E. DEBUGGING MECHANISMS

Figure E.1: The Test Data Generator Dialog for different types of generic debug data. For each of these,
an array of 10 possible values is stored.

{
numberOfFourierCoefficients = 0,
defaultObstaclesLocator,

// insert your ID here!

numOfGenericDebugDataIDs,
unknown

};

...

Further down in this include file, some additional information about the debug data can be
provided which will be used by the RobotControl dialog. If this information is not provided, they
will be given default names.

Message handling in a module looks like this:

...

bool moduleName::handleMessage(InMessage& message)
{

bool handled = false;

switch(message.getMessageID())
{
case idGenericDebugData:

E.3. DEBUG KEYS 119

{
GenericDebugData d;
message.bin >> d;

if(d.id == GenericDebugData::genericDebugDataIDforThisModule)
{

OUTPUT(idText,text,"generic debug message
handled by module ModuleName");

memberVariable = d.data[0];
anotherMemberVariable = (int)d.data[1];

}
handled = true;
break;

}
}
return handled;

}

E.3 Debug Keys

The tools RobotControl and SimGT2003 (cf. Sect.5) can process a wide range of messages from
physical or simulated robots. As it is not possible to send all the messages at once,debug keysare
used to toggle the output of these messages. They are also transmitted to the robot using message
queues. InGT2003\Src\Tools\Debugging\DebugKeyTable.ha variety of keys are declared.

Each key can have one of following states:

Disabled. No output is sent.

Send always.The output is always sent.

Send n times.The output is sent a total of n times.

Send every n times.Every n-th output is actually being sent.

Send every n ms.The output is sent every n milliseconds.

The classDebugKeyTablehas a memberisDebugKeyActive()that determines whether the
message shall be sent dependent on the state of a given key, e. g.:

if (myDebugKeyTable.isDebugKeyActive(DebugKeyTable::sendImages))
{

myQueue.out.bin << image;

120 APPENDIX E. DEBUGGING MECHANISMS

myQueue.out.finishMessage(idImage);
}

There are two modes associated with sending the output (queue fill requests):

Immediately. This will put the output into the queue. This makes sure that all requested outputs
are being sent. (Caution: It can lead to the queue becoming too large.)

Real-Time. If an output of the same type is already in the queue and has not been sent, it will be
removed from the queue and replaced by the new data. This is useful when the requested
output is large and tends to fill up the queue quickly. It is particularly useful for sending
images (or JPEG encoded images) from the robot to RobotControl.

E.4 Debug Macros

To simplify the access to outgoing message queues and to the appropriate debug key table, two
macros are defined inGT2003\Src\Tools\Debugging\Debugging.h:

OUTPUT(type, format, data) storesdata in a certainformatand a certain messagetypein the
outgoing queue of the process.

INFO(key, type, format, data) works similar toOUTPUT, but only, when the debug keykeyis
active.

Example:

OUTPUT(idText,text,"Hello World");
OUTPUT(idText,text,"Found " << numberOfBalls << " balls.");
OUTPUT(idSensorData,bin,mySensorData);
INFO(sendImage,idImage,bin,myImage);

Both macros are ignored inReleaseconfigurations to save processing time.

E.5 Debug Drawings

At every location in the code a debug drawing can be drawn and sent. There exist two types of
drawings:imageDrawingsare in pixel coordinates and will be displayed in the image viewer
(cf. Sect.J.3.1), whereasfieldDrawingsare in the system of coordinates of the field and will be
shown in the field view and the radar viewer (cf. Sect.J.3.2). Use the context menu to toggle
the visibility of a given debug drawing in the respective dialog. Bear in mind that for the debug
drawing to be displayed, the module that creates the drawing needs to be active (i. e. it needs to
be selected in the settings dialog).

To generate aDebugDrawingthe following has to be done:

E.6. MODULES AND SOLUTIONS 121

• Tools/Debugging/DebugDrawing.hhas to be included in the file from which it will be
drawn.

• In GT2003\Src\Tools\Debugging\DebugDrawing.ha new drawingID has to be added to
one of the enumeration typesFieldDrawing or ImageDrawing. In the methodgetDraw-
ingName(), a string representation for the new drawingID has to be given. In the method
getDebugKeyID(), a debug key for requesting the drawing has to be added. This debug key
has to be defined inGT2003\Src\Tools\Debugging\DebugKeyTable.h.

• In the file that should draw, the following has to be added, e. g. to create a drawing called
“sketch”:

...

// paint to the drawing
CIRCLE(sketch, x, y, radius, 3, 0, Drawings::orange);

...

// send the debug drawing
DEBUG_DRAWING_FINISHED(sketch);

A debug drawing is only painted if the corresponding request is sent. The requests are set
automatically, if the drawing is selected in the context menu of the image viewer or the field
view. It is possible to write to the same debug drawing from any number of modules. If you do
so, make sure that the last module to write to the drawing also contains the finish-command.

E.6 Modules and Solutions

To obtain solutions for the modules that can be exchanged during runtime, there is a base class
for each module, e. g. the classImageProcessor. All solutions for this module (e. g.LinesImage-
ProcessorandGT2003ImageProcessor) are derived from this base class. Each module has its
own ModuleSelectorclass, e. g. theImageProcessorSelector. An instance of the selector class is
created in the process the module is part of. The selector class creates instances of all solutions
of the module during construction, but executes only one of the solutions during runtime.

The data structureSolutionRequeststores what the current solution for each module is. This
data structure can be modified on the PC and can be sent to the robot (cf. Sect.J.2.3). Each
process contains aSolutionHandlerwhich receives the solution requests. Each module selector
class has a reference to the solution handler, and thus it can decide, which of the solutions has to
be executed.

To add a new module, the base class, the selector class based on the templateTModuleSelec-
tor, and the different classes for the solutions that derive from the base class have to be created.

122 APPENDIX E. DEBUGGING MECHANISMS

In the selector class all solutions have to be added. InGT2003\Src\Tools\SolutionRequest.hthe
new module and the solutions have to be added to the enum data types and to the functions pro-
viding names for the modules and solutions. In one of the available processes, an instance of the
selector class has to be instantiated, and itsexecute()method has to be called.

E.7 Stopwatch

To track down waste of time in the code, inGT2003\Src\Tools\Stopwatch.htwo macros are
defined:

STOP TIME(expression) measures the system time before and after the execution ofexpres-
sionand outputs the difference as a text.

STOP TIME ON REQUEST(eventID, expression).If the time keeping is requested for the
eventID, the time is measured before and after the execution ofexpressionand sent as an
debug message with the ididStopwatch. With the time diagram dialog (cf. Sect.J.3.6) the
requests can be generated and the results of the measurements are displayed.

Example:

STOP_TIME_ON_REQUEST(imageProcessor, pImageProcessor->execute(););

STOP_TIME(
for(int i = 0; i < 1000000; i++)
{

double x = sqrt(i);
x *= x;

}
);

Appendix F

XABSL Language Reference

The XABSL language is specified in XML Schema 1.0 [6].
Agents following the introduced layered state machine architecture (cf. section3.8.1) can be

completely described in that language.

The XABSL language design ensures:

• The interoperability with existing XML editors and tools.

• That no other compile or validation tools than standard XSLT / XML processors are
needed.

• The scalability of agent behavior solutions. Agent behaviors are easy to extend.

• High validation and compile speed resulting in a short change-compile-test cycle.

F.1 Modularity

An XABSL agent behavior specification is distributed over many files. This helps to keep an
overview over larger agents and to work in parallel.

FigureF.1shows the different file types that are part of an XABSL agent behavior:

• Symbol files contain the definitions of symbols. These symbols are used in the options.

• Basic behavior files contain prototypes for basic behaviors and their parameters. They are
referenced from states which have a subsequent basic behavior.

• Option files contain a single option.

• “options.xml” defines prototypes for each option and its parameters. These prototypes are
needed to check in an option file, whether a referenced subsequent option exists.

• “agents.xml” includes all the option files. Agents and its root options can be defined here.

123

124 APPENDIX F. XABSL LANGUAGE REFERENCE

options
basic

behaviors

symbols

“options.xml“

“agents.xml“

Inclusion using XInclude

Inclusion with external file entities

b

od

a

s

o

o

o

s

b

Figure F.1: Different file types of an XABSL specification

There are two include mechanisms (including one XML file into another) in use:

• External file entities: A code block, e. g. the file “my-symbols.xml” is defined as an ex-
ternal file entity inside a DTD. At the correct position in the code it is used with e. g.
&mySymbols;. Most XML editors support this mechanism. It allows checking the validity
of an option inside the XML editor.

The disadvantage: No cascading inclusions possible.

• XInclude(http://www.w3.org/TR/xinclude/): A file is directly included into another one
with a statement like this:

<xinclude href="another-file.xml"/>

An XInclude processor later resolves these includes for further processing.

The disadvantage: Most XML editors don’t resolve XInclude statements for validation.

As an agent can be distributed over many files, the schemas are also modularized:

F.2. SYMBOL DEFINITIONS 125

xabsl-2.1.agent-collection.xsd The root element of an XABSL behavior. Agent defini-
tions.

xabsl-2.1.basic-behaviors.xsd Prototypes for basic behaviors.
xabsl-2.1.expressions.xsd Decimal and boolean expressions.
xabsl-2.1.option-definitions.xsd Prototypes for options.
xabsl-2.1.option.xsd Definition of an option.
xabsl-2.1.parameter.xsd Parameters for options, basic behaviors and functions.
xabsl-2.1.symbols.xsd Definition of symbols.
xinclude-1.0.xsd A simplified scheme for the XInclude standard.
xmlbase.xsd A simplified scheme for the XML base standard.

The exported XABSL namespace is:

http://www.ki.informatik.hu-berlin.de/XABSL2.1

F.2 Symbol Definitions

All symbols that are used inside options have to be defined before in separate symbol files. For
example the file“my-symbols.xml”can look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<symbols xmlns="http://www.ki.informatik.hu-berlin.de/XABSL2.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ki.informatik.hu-berlin.de/XABSL2.1

xabsl-2.1.symbols.xsd"
id="my-symbols" title="My Symbols"
description="My most used symbols">

<boolean-input-symbol name="something-wrong"
description="a boolean symbol"/>

<decimal-input-symbol name="foo"
description="a decimal symbol" measure="mm"/>

<decimal-input-function name="abs"
description="the absolute value of a number"
measure="">

<parameter name="abs.value" measure="" range="decimal"
description="The value for that abs() is calculated"/>

</decimal-input-function>
<enumerated-input-symbol name="type-of-recognized-pet"

description="Which pet was seen by the robot">
<enum-element name="dog"/>
<enum-element name="cat"/>
<enum-element name="guinea-pig"/>

126 APPENDIX F. XABSL LANGUAGE REFERENCE

</enumerated-input-symbol>
<enumerated-output-symbol name="op-mode"

description="The mode how fast the robot shall act">
<enum-element name="op-mode.slow"/>
<enum-element name="op-mode.fast"/>
<enum-element name="op-mode.very-fast"/>

</enumerated-output-symbol>
<constant name="pi" description="The value of pi"

measure="rad" value="3.14"/>

...
</symbols>

Attributes of the elementsymbols:

• “id” : An id for the symbol collection. Must be identical to the file name without extension.

• “title” : A title needed for the documentation.

• “description” : A description needed for the documentation.

FigureF.2 shows the structure of the elementsymbols. There are 6 different symbol types
allowed inside a symbols element:

boolean-input-symbol:A symbol for a Boolean variable or function.
Attributes:

• “name” : The name of the symbol.

• “description” : A description needed for the documentation.

decimal-input-symbol: A symbol for a decimal variable or function (the XabslEngine uses dou-
ble).

Attributes:

• “name” : The name of the symbol.

• “description” : A description needed for the documentation.

• “measure”: The measure of the values. Needed for the documentation.

decimal-input-function: A prototype for a parameterized decimal function (cf. fig.F.3).
The parameters of the functions are defined in separateparameterchild elements.
Attributes:

• “name” : The name of the function.

• “description” : A description needed for the documentation.

• “measure”: The measure of the values. Needed for the documentation.

F.2. SYMBOL DEFINITIONS 127

Figure F.2: The structure of the elementsymbols

enumerated-input-symbol:A symbol for an enumerated variable or function (cf. fig.F.4).
Each enum element is defined in a singleenum-elementchild element.
Attributes:

• “name” : The name of the symbol.

• “description” : A description needed for the documentation.

enumerated-output-symbol:Enumerated symbol can be set by states to influence the agent’s
software environment besides the execution of a basic behavior. As theenumerated-input-symbol
it hasenum-elementchild elements.

Attributes:

• “name” : The name of the symbol.

• “description” : A description needed for the documentation.

128 APPENDIX F. XABSL LANGUAGE REFERENCE

Figure F.3: The elementdecimal-input-function

Figure F.4: The elementenumerated-input-symbol

constant:Defines a decimal constant.
Attributes:

• “name” : The name of the constant.

• “description” : A description needed for the documentation.

• “measure”: The measure of the values. Needed for the documentation.

• “value” : The decimal value of the constant.

F.3 Basic Behavior Prototypes

For each basic behavior (they are written in C++), a prototype has to be declared. An example
basic behavior file“my-basic-behaviors.xml”can look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<basic-behaviors

xmlns="http://www.ki.informatik.hu-berlin.de/XABSL2.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ki.informatik.hu-berlin.de/XABSL2.1

xabsl-2.1.basic-behaviors.xsd"
id="my-basic-behaviors" title="My Basic Behaviors"
description="My common basic behaviors">
<basic-behavior name="move-to"

description="Lets the agent move to a point">
<parameter name="move-to.x" measure="mm" range="-1000..1000"

description="X of destination position"/>
<parameter name="move-to.y" measure="mm" range="-1000..1000"

F.3. BASIC BEHAVIOR PROTOTYPES 129

description="Y of destination position"/>
</basic-behavior>
<basic-behavior name="wait"

description="The agent performs no action"/>
</basic-behaviors>

Attributes of the elementbasic-behaviors:

• “id” : An id for the basic behavior collection. Must be identical to the file name without
extension.

• “title” : A title needed for the documentation.

• “description” : A description needed for the documentation.

The elementbasic-behaviorshas to have at least on child element of the typebasic-behavior.
The elementbasic-behavior(cf. fig. F.5defines a prototype for a basic behavior.

Figure F.5: The elementbasic-behavior

Attributes:

• “name” : The name of the basic behavior.

• “description” : A description needed for the documentation.

Optionally it hasparameterchild elements, which parameterize a basic behavior written in
C++.

Attributes:

• “name” : The name of the parameter.

• “description” : A description needed for the documentation.

• “measure”: The measure of the values. Needed for the documentation.

• “range” : The range of possible values. Needed for the documentation.

130 APPENDIX F. XABSL LANGUAGE REFERENCE

F.4 Prototypes for Options

Every option can be encapsulated in an own file. To be able to validate a single option (e. g. the
existence of a referenced subsequent option), there must be prototypes for all other options.

Therefore, in each XABSL agent behavior specification a file named “options.xml” has to
exist. It should look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<option-definitions

xmlns="http://www.ki.informatik.hu-berlin.de/XABSL2.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ki.informatik.hu-berlin.de/XABSL2.1

xabsl-2.1.option-definitions.xsd">
<option-definition name="nice-behavior"

description="A nice behavior"/>
<option-definition name="move-around"

description="A behavior for randomly moving around">
<parameter name="move-around.speed" measure="mm/s"

range="0..500"
description="The speed with that the robot shall move"/>

</option-definition>
...

</option-definitions>

The elementoption-definitions(cf. fig. F.6) has no attributes. It has to have at least oneoption-
definitionchild element.

Figure F.6: The elementoption-definitions

The elementoption-definitiondefines a prototype for an option.
Attributes:

• “name” : The name of the option.

• “description” : A description needed for the documentation.

It can haveparameterchild elements, which allow it to parameterize an option.
Attributes:

• “name” : The name of the parameter.

F.5. OPTIONS 131

• “measure”: The measure of the values. Needed for the documentation.

• “range” : The range of possible values. Needed for the documentation.

F.5 Options

Each option has to be defined in a separate file, e. g.“Options/foo.xml”:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE dummy-doc-type [

<!ENTITY my-symbols SYSTEM "../my-symbols.xml">
<!ENTITY my-basic-behaviors SYSTEM "../my-basic-behaviors.xml">
<!ENTITY options SYSTEM "../options.xml">

]>
<option xmlns="http://www.ki.informatik.hu-berlin.de/XABSL2.1"

xmlns:xi="http://www.w3.org/2001/XInclude"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ki.informatik.hu-berlin.de/XABSL2.1

xabsl-2.1.option.xsd"
name="foo" initial-state="first-state">
&my-symbols;
&my-basic-behaviors;
...
&options;
<state name="first-state">

...
</state>
<state name="second-state">

...
</state>

</option>

The elementoption(cf. fig. F.7) is the root element of an option file and has these attributes:

• “name” : The name of the option. Must be the file name without extension.

• “initial-state” : The name of the initial state. This state becomes activated if the option was
not active during the last execution of the option graph.

First, the files for all referenced symbol definitions, all referenced basic behaviors, and the
option definitions have to be included into the option. As shown in the example, this can be
done by declaring all included files as external file entities in a dummy DTD at the top of the
document. Inside the option element, these entities are used to include the files at the correct
position.

132 APPENDIX F. XABSL LANGUAGE REFERENCE

Figure F.7: The elementoption

After the includedsymbols, basic-behaviors, andoption-definitionschild elements there can
follow a common-decision-treechild element (cf. fig.F.8).

If there are transitions with the same conditions in each state, these conditions can be put
into this common decision tree. It is carried out before the decision tree of the active state. If
no condition of the common decision tree evaluates true, the decision tree of the active state is
carried out. That’s also the reason why there is noelsechild element.

If the common decision tree uses expressions that are specific for a state (time-of-state-
activation, subsequent-option-reached-target-state), these expressions refer to the state that is
currently active.

The child elementsif andelse-if are the same as in the normal decision tree of a state, which
is explained later in this chapter.

Besides and after the optionalcommon-decision-treeeach option has to have at least one state
child element, which is described in the next section.

F.6. STATES 133

Figure F.8: The elementcommon-decision-tree

F.6 States

Thestateelement (cf. fig.F.9) represents a single state of an option’s state machine:

<state name="first-state" is-target-state="true">
<subsequent-basic-behavior ref="move-to">

<set-parameter ref="move-to.x">
<decimal-value value="42"/>

</set-parameter>
</subsequent-basic-behavior>
<set-output-symbol ref="op-mode" value="op-mode.fast"/>
<decision-tree>

<if>
<less-than>

<decimal-input-symbol-ref ref="foo"/>
<decimal-value value="14"/>

<less-than>
<transition-to-state ref="second-state"/>

</if>
<else>

<transition-to-state ref="first-state"/>
</else>

</decision-tree>
</state>

Attributes:

• “name” : The name of the state.

• “is-target-state” (optional): If true, this state is marked as a “target state”. In an option con-
taining a state with this option as subsequent behavior, it can be queried if the subsequent
option reached this marked target state.

Eachstatehas to have either asubsequent-optionor asubsequent-basic-behaviorchild ele-
ment. This determines, which subsequent behavior becomes executed if this state is active.

Attributes for both:

• “ref” : The name of the referenced option or basic behavior.

134 APPENDIX F. XABSL LANGUAGE REFERENCE

Figure F.9: The elementstate

If the referenced options or basic behaviors have parameters, these can be set with theset-
parameterchild elements (cf. fig.F.10).

a) b)

Figure F.10: a) The elementsubsequent-optionb) The elementsubsequent-basic-behavior

Attributes:

• “ref” : The name of the referenced parameter of the subsequent behavior.

If the subsequent behavior has a parameter that is not set in the state referencing the parame-
ter, the executing engine sets the parameter to zero.

The child element of theset-parameterelement has to be a decimal expression. Decimal
expressions are described later in this chapter.

After the definition of the subsequent behavior, output symbols can be set by insertingset-
output-symbolchild elements. The state which is active after the state machine of the option was
carried out can set these symbols. It may happen that an option which becomes activated lower
in the option graph overwrites an output symbol. The output symbols are applied to the software
environment only when the option graph was executed completely.

F.7. DECISION TREES 135

Parameters:

• “ref” : The referenced output symbol.

• “value” : The value to be set. This must be one of the enum elements of the output symbol.

At last, each state has to contain adecision-treechild element, which is described in the next
section.

F.7 Decision Trees

Each state has a decision tree. The task of this decision tree is to determine a transition to another
state depending on the input symbols, which can be the same state. So the leaves of a decision
tree are transitions.

The elementdecision-treeitself is astatement(cf. fig. F.11).

Figure F.11: The groupstatement

This element contains either an if/else-if/else block or a transition to a state.
An if/else-if/else block consists of anif element, optionalelse-if elements and anelseele-

ment. Theif and theelse-if elements both have aconditionchild element and a statement which
is executed if the condition is true. The statement itself is again either a if/else-if/else block or a
transition to a state. This allows for complex nested expressions.

Theconditionelement has a Boolean expression as a child element. This is explained in the
next section.

Parameters:

• “description” : A description needed for the documentation.

136 APPENDIX F. XABSL LANGUAGE REFERENCE

Thetransition-to-stateelement represents a transition to another state.
It has these parameters:

• “ref” : The name of the referenced state.

F.8 Boolean Expressions

A boolean-expressioncan be one of these elements shown in figureF.12:

Figure F.12: The groupboolean-expression

F.9. DECIMAL EXPRESSIONS 137

boolean-input-symbol-ref:A reference to a Boolean input symbol.
Parameters:

• “ref” : The name of the referenced symbol.

enumerated-input-symbol-comparison:Compares the value of an enumerated input symbol
with a given enumerated value.

Parameters:

• “ref” : The name of the referenced symbol.

• “value” : The enum element for comparison.

and, or: The Boolean&& and|| operators. They have twoboolean-expressionchild elements.

not: The Boolean! operator. It has aboolean-expressionchild element.

equal-to, not-equal-to, less-than, less-than-or-equal-to, greater-than, greater-than-or-
equal-to: The ==, ! =, <, <=, > and >= operator. They all have twodecimal-expression
child elements. These are described in the next section.

subsequent-option-reached-target-state:This statement becomes true, when

• the subsequent behavior of the state is an option,

• the active state of the subsequent option is marked as a target state.

Otherwise this statement is false.

F.9 Decimal Expressions

Thedecimal-expressiongroup can be used inside some Boolean expressions and for the param-
eterization of subsequent behaviors. It can be one of the elements shown in figureF.13.

decimal-input-symbol-ref: A reference to a decimal input symbol. Parameters:

• “ref” : The name of the referenced symbol.

138 APPENDIX F. XABSL LANGUAGE REFERENCE

Figure F.13: The groupdecimal-expression

F.9. DECIMAL EXPRESSIONS 139

decimal-input-function-call: A call to a decimal input function. Parameters:

• “ref” : The name of the referenced function.

For each parameter of the function, awith-parameterelement must be inserted (cf. fig.F.14).
If a parameter is not set, the executing engine sets the parameter to 0. Parameters of the

with-parameterelement:

• “ref” : The name of the parameter of the referenced function.

The elementwith-parametermust have adecimal-expressionchild element.

Figure F.14: The elementdecimal-input-function-call

constant-ref: A reference to a constant which was defined in asymbolscollection. Parameters:

• “ref” : The referenced constant.

decimal-value:A decimal value, e. g.“3.14” . Parameters:

• “value” : The decimal value.

option-parameter-ref: References a parameter of the option. Parameters:

• “ref” : The referenced option parameter. Must be defined in the option definition for that
option.

plus, minus, multiply, divide, mod: The arithmetic+, −, ∗, / and% operators. They all have
two decimal-expressionchild elements.

time-of-state-execution:The time, how long the state is already active. This time is reset when
the state was not active during the last execution of the engine. Note that it may happen that the
option activation path above the current option changes without this time being reset (it is only
important that the option and the state were active during the last execution of the engine).

time-of-option-execution:The time, how long the option is already active. This time is reset if
the option was not active during the last execution of the engine. Also here it may happen that
the option activation path above the current option changes without this time being reset.

140 APPENDIX F. XABSL LANGUAGE REFERENCE

conditional-expression:This works such as an ANSI C question mark operator (cf. fig.F.15).
A conditionis checked. If the condition is true, the decimal expressionexpression1is returned,
otherwiseexpression2.

Theconditionelement contains aboolean-expressionchild element, theexpression1andex-
pression2elements containdecimal-expressionchild elements.

Figure F.15: The elementconditional-expression

F.10 Agents

The file “agents.xml” is the root document of an XABSL behavior specification. It includes all
the options and defines agents. An example“agents.xml” file may look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE options [
<!ENTITY options SYSTEM "options.xml">
]>
<agent-collection

xmlns="http://www.ki.informatik.hu-berlin.de/XABSL2.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ki.informatik.hu-berlin.de/XABSL2.1

xabsl-2.1.agent-collection.xsd"
xmlns:xi="http://www.w3.org/2001/XInclude">

<title>My XABSL behavior application</title>
<platform>My robot/agent platform.</platform>
<software-environment>My software platform</software-environment>

<agent id="default-agent" title="Default"
description="The default agent behavior"
root-option="foo"/>

<agent id="test-behavior" title="Test"
description="A test environment for the option bla"
root-option="bla"/>

F.10. AGENTS 141

...
&options;
<options>

<xi:include href="Options/foo.xml"/>
<xi:include href="Options/bla.xml"/>
...

</options>
</agent-collection>

FigureF.16shows the structure of the agent-collection element.

Figure F.16: The elementagent-collection

The DTD at the top of the file declares the file“options.xml” as the external file entity&op-
tions;, which is later used to include the file at the correct position before the options element.

The title, platform, and software-environmentelements are only used for generating the
HTML documentation.

In an XABSL behavior, the option graph doesn’t need to be completely connected. So it is
difficult to determine a single root option of the graph. Instead a sub-graph that is spanned by
an option and all it’s subsequent options and basic behaviors can be declared as an agent. So an
agent defines a starting point into the option graph.

There has to be at least one agent child element inside theagent-collectionelement. At-
tributes:

• “id” : The id of the agent. This id must be used to select that agent at the engine.

• “title” : A title needed for the documentation.

142 APPENDIX F. XABSL LANGUAGE REFERENCE

• “description” : A description needed for the documentation.

• “root-option” : The root option of the agent.

After the definition of the agents, the option prototypes are included. Although they are al-
ready included in the option files, they are included here again because they are needed for the
validation of the agent elements.

At last, all options that are used by the agents and all options that are referenced from other
options used have to be included inside theoptionselement using XInclude.

Appendix G

XABSL Tools

From XABSL source documents, three types of documents can be generated:

• An Intermediate Codewhich is executed by the XabslEngine. Thus no XML parser is
needed as on many embedded computing platforms XML parsers are not available due to
resource and portability constraints.

• Debug Symbolscontaining the names of all options, states, basic behaviors, and symbols
make it possible to implement platform and application dependent debugging tools for
monitoring option and state activations as well as input and output symbols.

• An extensive HTML-documentation containing SVG-charts for each agent, option, and
state which helps the developers to understand what their behaviors do.

concatenation of all
behavior files:
“agents.xinclude-processed.xml“

“agents.xml“

debug
symbols

intermediate
code

HTML/ SVG
documentation

multiple behavior files

x

validation?

Figure G.1: Document generation in XABSL

FigureG.1 shows how these documents are generated. Because an XABSL agent behavior
specification is distributed over many XML files, first all these files are concatenated into a single
big file “agents.xinclude-processed.xml”. Then this file is validated against the XABSL schema.
If that was successful, the intermediate code, the debug symbols, and the documentation are
generated. The files are automatically generated using a Makefile, which is described in the next
section.

143

144 APPENDIX G. XABSL TOOLS

G.1 Adopting the Makefile

As there are very many input files and XSLT style sheets, it is recommended to use a Makefile
instead of executing the XSLT processor directly. There is a common XABSL Makefile. This
file has to be included into a custom Makefile which should be located inside the directory of
the source files. The custom Makefile must contain the following variables:

XSLT An XSLT processor that can process XInclude statements
(with necessary parameters). We recommend LibXSLT
(http://xmlsoft.org/XSLT/).

DOT Path to the dot tool
(http://www.research.att.com/sw/tools/graphviz/). This is
needed for the charts in the HTML documentation.

DOTML DIR Directory that contains the DotML Schemas and XSLT
stylesheets (http://www.martin-loetzsch.de/DOTML/).
DotML is needed to generate the charts in the HTML
documentation.

SCHEMA V ALIDATOR Validates an XML file against the schemas referenced in
the source file taking the input from stdin. We recommend
to use Xerces (http://xml.apache.org/xerces-c/index.html).

XABSL DIR Directory of the XABSL Schemas and XSLT Stylesheets
relative to the source files and the custom Makefile.

XABSL OUTPUT DIR Directory where the intermediate code and the debug sym-
bols shall be generated.

DOC OUTPUT DIR Directory for the documentation output.
INSTANCE DIR Directory containing the sources relative to the

Xabsl2/xabsl-2.1 directory.
DEBUG SY MBOLS Path of the debug symbols to be generated.
INTERMEDIATE CODE The path of the intermediate code to be generated.
SY MBOL FILES All symbol files.
BASIC BEHAV IOR FILES All basic behavior files.
OPTION FILES All option files. The have to be all in a directory “Options”

inside the directory ofagents.xml.

At last, the common Makefile must be included into the Makefile:

include $(XABSL_DIR)/Xabsl2Makefile

G.2 Using the Makefile

make all

G.2. USING THE MAKEFILE 145

generatesagents.xinclude-processed.xmlfrom agents.xmlresolving all the XInclude state-
ments. Then this resolved file is validated and the intermediate code and the debug symbols are
generated. If the validation fails, the line number in the error message refers toagents.xinclude-
processed.xml.

make DOC

generates the documentation. Note that single HTML pages can also be generated separately
by typing

make file_path_and_name_of_the_HTML_page.html

Some shortcuts:

make VALID

Validation only.

make IC

Intermediate code only.

make DS

Debug symbols only.

make IC_DS

Intermediate code and debug symbols.

Appendix H

The Xabsl2Engine Class Library

TheXabsl2Engineis the XABSL runtime system. It is written in plain ANSI C++ and does not
use any extensions such as the STL. It is platform and application independent and can be easily
employed on any robotic platform. To run the engine in a specific software environment only two
classes (for file access and error handling) have to be derived from abstract classes.

The engine parses and executes the intermediate code that was generated from XABSL doc-
uments. It links the symbols from the XML specification that are used in the options and states
to the variables and functions of the agent platform. Therefore, for each symbol used an entity
in the software environment has to be registered to the engine. While options and their states are
represented in XML, basic behaviors are written in C++. They have to be derived from a com-
mon base class and registered to the engine. The engine provides extensive debugging interfaces
for monitoring the option and state activations, the values of the symbols, and the parameters of
options and basic behaviors. Instead of executing the engine from the root option, single options
or basic behaviors can be tested separately.

This document is also available at [12].

H.1 Files of the Xabsl2Engine

Xabsl2Engine/Xabsl2Agent.cpp
Xabsl2Engine/Xabsl2Agent.h
Xabsl2Engine/Xabsl2Array.h
Xabsl2Engine/Xabsl2BasicBehavior.h
Xabsl2Engine/Xabsl2BooleanExpression.cpp
Xabsl2Engine/Xabsl2BooleanExpression.h
Xabsl2Engine/Xabsl2DecimalExpression.cpp
Xabsl2Engine/Xabsl2DecimalExpression.h
Xabsl2Engine/Xabsl2Engine.cpp
Xabsl2Engine/Xabsl2Engine.h
Xabsl2Engine/Xabsl2Option.cpp
Xabsl2Engine/Xabsl2Option.h
Xabsl2Engine/Xabsl2Symbols.cpp

146

H.2. RUNNING THE XABSL2ENGINE ON A SPECIFIC TARGET PLATFORM 147

Xabsl2Engine/Xabsl2Symbols.h
Xabsl2Engine/Xabsl2Tools.cpp
Xabsl2Engine/Xabsl2Tools.h

See the Doxygen-generated source code documentation of the Xabsl2Engine at [12] for more
details.

H.2 Running the Xabsl2Engine on a Specific Target Platform

First, one has to declare a message and error handling class that is derived from
Xabsl2ErrorHandler. This class has to implement theprintMessage()andprintError() function,
e. g.:

class MyErrorHandler : public Xabsl2ErrorHandler
{
public:

MyErrorHandler();

virtual void printError(const char* text)
{ cout << "error: " << text << endl;}

virtual void printMessage(const char* text)
{ cout << text << endl;}

};

The Boolean variable “errorsOccurred” can be used to determine if there occurred errors
during the creation or execution of the engine.

Then, a class that gives the engine a read access to the intermediate code has to be derived
from Xabsl2InputSource. These pure virtual functions have to be implemented:

• open(): opens the file containing the intermediate code. Note that the code doesn’t need to
be read from a file. It is also possible to read it from a memory buffer or any other stream.

• close(): is called by the engine after having read the data.

• readValue(): reads a numeric value from the file.

• readString(): reads a string from the file.

An example:

class MyFileInputSource : public Xabsl2InputSource
{
public:

MyFileInputSource(const char* fileName) : file(0), theChar(’ ’)

148 APPENDIX H. THE XABSL2ENGINE CLASS LIBRARY

{ strcpy(filename,fileName); }

˜MyFileInputSource() {if (file!=0) delete file;}

virtual bool open()
{file = new std::ifstream(filename); return(file!=0);}

virtual void close() {if (file!=0) delete file; file = 0;}

virtual double readValue()
{ char buf[20]; readFromFile(buf); return atof(buf); }

virtual bool readString(char* destination, int maxLength)
{ readFromFile(destination); return true; }

private:
char filename[200];
std::ifstream* file;
char theChar;

void readFromFile(char* value)
{

while(!file->eof() && isWhitespace())
{

if (theChar == ’/’)
while(!file->eof() && theChar != ’\n’)

file->read(&theChar,1);
file->read(&theChar,1);

}

while(!file->eof() && !isWhitespace())
{ *value++ = theChar;

if(!file->eof()) file->read(&theChar,1); }
*value = 0;

}

bool isWhitespace()
{ return theChar == ’ ’ || theChar == ’/’ || theChar == ’\n’

|| theChar == ’\r’ || theChar == ’\t’; }
};

Please note that the file contains comments (//...) that have to be skipped by the read functions:

// divide (7)
7

H.3. CREATING A NEW ENGINE 149

// multiply (6)
6
// decimal value (0): 52.5
0 52.5
// reference to decimal symbol (1) ball.y:
1 13

The comments have to be treated as in C++ files. (New line ends a comment.) In the example
only “7 6 0 52.5 1 13” should be read from the file.

At last, a static function that returns the system time in milliseconds has to be defined, e.g.:

static unsigned long getSystemTime() {
timeb sysTime;
ftime(&sysTime);
return (sysTime.time * 1000 + sysTime.millitm);

}

H.3 Creating a New Engine

First, an instance of the adaptedXabsl2ErrorHandlerhas to be created:

MyErrorHandler errorHandler;

Then, the engine can be created, passing a reference to the error handler and a pointer to the
time function as parameters:

Xabsl2Engine* pMyEngine
= new Xabsl2Engine(errorHandler,&getSystemTime);

Now all the symbols and basic behaviors have to be registered to the engine. Note that this
has to be done before the option graph is created.

H.4 Registering Symbols

As the behaviors written in XABSL use symbols to interact with the agent’s software environ-
ment, for each of these symbols the corresponding variable or function have to be registered
to the engine. The following example registers the variableaDoubleVariableto the symbol ”a-
decimal-symbol” which was defined in the XABSL agent:

pMyEngine->registerDecimalInputSymbol("a-decimal-symbol",
&aDoubleVariable);

150 APPENDIX H. THE XABSL2ENGINE CLASS LIBRARY

If the value for the symbol is not represented by a variable but by a function, this function
has to be registered to the engine. Note that this function has do be defined inside a class which
is derived fromXabsl2FunctionProvider:

class MySymbols : public Xabsl2FunctionProvider
{
public:

double doubleReturningFunction() { return 3.7; }
};

...

MySymbols mySymbols;

pMyEngine->registerDecimalInputSymbol("a-decimal-symbol",
&mySymbols, (double (Xabsl2FunctionProvider::*)())
&MySymbols::doubleReturningFunction);

The registration of boolean symbols works in a similar way:

pMyEngine->registerBooleanInputSymbol("a-boolean-symbol",
&aBooleanVariable);

Or:

class MySymbols : public Xabsl2FunctionProvider
{
public:

bool booleanReturningFunction() { return false; }
};

...

MySymbols mySymbols;

pMyEngine->registerBooleanInputSymbol("a-boolean-symbol",
&mySymbols, (bool (Xabsl2FunctionProvider::*)())
&MySymbols::booleanReturningFunction);

Enumerated input symbols have to be registered that way:

class MySymbols : public Xabsl2FunctionProvider
{
public:

enum MyEnum { element1, element2, element3 } anEnumVariable;
MyEnum enumReturningFunction() { return MySymbols::element3; }

H.4. REGISTERING SYMBOLS 151

};

...

MySymbols mySymbols;

pMyEngine->registerEnumeratedInputSymbol("an-enumerated-symbol",
(int*)&mySymbols.anEnumVariable);

Or:

pMyEngine->registerEnumeratedInputSymbol("an-enumerated-symbol",
&mySymbols, (int (Xabsl2FunctionProvider::*)())
&MySymbols::enumReturningFunction);

After that, for each enum element that was defined in the XABSL agent the corresponding
value has to be registered:

pMyEngine->registerEnumeratedInputSymbolEnumElement(
"an-enumerated-symbol","element1",MySymbols::element1);

pMyEngine->registerEnumeratedInputSymbolEnumElement(
"an-enumerated-symbol","element3",MySymbols::element3);

The registration of enumerated output symbols works in a very similar way using these func-
tions:

void registerEnumeratedOutputSymbol(char *name, int *pVariable);

void registerEnumeratedOutputSymbol(char *name,
Xabsl2FunctionProvider *pInstance,
void(Xabsl2FunctionProvider::*pFunction)(int));

void registerEnumeratedOutputSymbolEnumElement(
const char *symbolName, const char *name, int value);

At last, decimal input functions have to be registered similar to decimal input symbols. In
addition, for each parameter of the function a variable has to be declared and registered:

class MySymbols : public Xabsl2FunctionProvider
{
public:

double parameter1, parameter2;
double myFunction() { return (parameter1 + parameter2) / 2; }

};

...

152 APPENDIX H. THE XABSL2ENGINE CLASS LIBRARY

MySymbols mySymbols;

pMyEngine->registerDecimalInputFunction(
"a-decimal-input-function", &mySymbols,
(double (Xabsl2FunctionProvider::*)())&MySymbols::myFunction);

pMyEngine->registerDecimalInputFunctionParameter(
"a-decimal-input-function","parameter1",mySymbols.parameter1);

pMyEngine->registerDecimalInputFunctionParameter(
"a-decimal-input-function","parameter2",mySymbols.parameter2);

H.5 Registering Basic Behaviors

All basic behaviors have to be derived from the classXabsl2BasicBehaviorand have to imple-
ment the pure virtual functionexecute(). The name of the basic behavior has to be passed to
the constructor of the base class. The parameters of the basic behavior have to be declared as
members of the class and registered usingregisterParameter(..):

class MyBasicBehavior : public Xabsl2BasicBehavior
{
public:

double parameter1, parameter2;

MyBasicBehavior(Xabsl2ErrorHandler& errorHandler)
: Xabsl2BasicBehavior("a-basic-behavior",errorHandler)

{
registerParameter("parameter1",parameter1);
registerParameter("parameter2",parameter2);

}

virtual void execute()
{

// do the requested action using parameter1 and parameter2
}

};

Then, for each basic behavior class an instance has to be registered to the engine:

MyBasicBehavior myBasicBehavior(errorHandler);

pMyEngine->registerBasicBehavior(myBasicBehavior);

H.6. CREATING THE OPTION GRAPH 153

H.6 Creating the Option Graph

After the registration of all symbols and basic behaviors, the intermediate code can be parsed:

MyFileInputSource input("path_to_the_intermediate_code.dat");

pMyEngine->createOptionGraph(input);

If the engine detects an error during the execution of the option graph, the error handler is
invoked. This can happen when the intermediate code contains a symbol or a basic behavior
that was not registered before. Whether the option graph was created successfully or not can be
checked like this:

if (errorHandler.errorsOccurred)
{

// do some backup behavior
delete pMyEngine;

}

H.7 Executing the Engine

If no errors occurred during the creation, the engine can be executed this way:

pMyEngine->execute();

This function executes the option graph only a single time. Starting from the selected root
option, the state machine of each option is carried out to determine the next active state. Then
for the subsequent option of this state the state machine becomes carried out and so on until
the subsequent behavior is a basic behavior, which is executed then, too. After that the output
symbols that were set during the execution of the option graph become applied to the software
environment.

In the execute()function the execution starts from the selected root option, which is in the
beginning the root option of the first agent. The agent can be switched using this function:

pMyEngine->setSelectedAgent("name-of-the-agent");

H.8 Debugging Interfaces

Instead of executing the option graph withexecute(), the functionexecuteSelectedBasicBehav-
ior() can be called. This is useful to test a single basic behavior. Before that, with

154 APPENDIX H. THE XABSL2ENGINE CLASS LIBRARY

pMyEngine->setSelectedBasicBehavior("name-of-the-basic-behavior");

a basic behavior must be selected for execution. With

pMyEngine->setBasicBehaviorParameter("name-of-the-basic-behavior",
"name-of-the-parameter",42);

the parameters can be set.
For testing single options, the root option can be changed and parameterized:

pMyEngine->setRootOption("another-option");

pMyEngine->setOptionParameter("another-option",
"parameter-name",23);

There is a number of functions to trace the current state of the option graph, the option
activation path, the option parameters, and the selected basic behavior:

const Xabsl2Option* getRootOption () const;

const char* getSelectedAgentName ();

const Xabsl2BasicBehavior* getSelectedBasicBehavior ();

The member functions of theXabsl2OptionandXabsl2BasicBehaviorobjects returned can
be used to retrieve this information.

For tracing the values of symbols, the engine provides access to the symbols stored:

Xabsl2DecimalInputSymbol* getDecimalInputSymbol(
const char *name);

Xabsl2BooleanInputSymbol* getBooleanInputSymbol(
const char *name);

Xabsl2EnumeratedInputSymbol* getEnumeratedInputSymbol(
const char *name);

Xabsl2EnumeratedOutputSymbol* getEnumeratedOutputSymbol(
const char *name);

Note that these functions crash if the symbol requested does not exist. The existence of sym-
bols can be checked using these methods:

bool existsDecimalInputSymbol(const char *name);
bool existsBooleanInputSymbol(const char *name);

H.8. DEBUGGING INTERFACES 155

bool existsEnumeratedInputSymbol(const char *name);
bool existsEnumeratedOutputSymbol(const char *name);

Enumerated output symbols can also be set manually for testing purposes. Note that this
has to be done after the option graph was executed. The changes are committed to the software
environment using this function:

pMyEngine->setOutputSymbols();

Appendix I

SimGT2003 Usage

I.1 Introduction

SimGT2003 is based on SimRobot [1], a kinematic robotics simulator. In fact, only a so-called
controller has been added to SimRobot that provides the same environment to robot control code
that it will also find on the real robots. Therefore, SimGT2003 shares the user interface with
SimRobot. This user interface is documented in the online help file that comes with SimRobot. In
addition, the scene description language that is used to model the simulation scenes is explained
in the help file. Hence, these descriptions are not repeated here.

SimGT2003 is the second Windows tool of the GermanTeam besides RobotControl. While
RobotControl focuses oninteraction, SimGT2003 has its strength inautomation. The main input
channel of SimGT2003 is a console window that is much harder to use than the mouse-enabled
interface of RobotControl, but the text based approach to command input also provides the pos-
sibility to use script files, which is the key feature to automate a lot of processes. Therefore,
SimGT2003 can speed up the development, because—once configured—no further user inter-
vention is required after the start of the program. Therefore, there is no waste of time for opening
log files, setting debug keys, switching solutions, and connecting to robots. Besides, SimGT2003
still seems to be more stable than RobotControl, mainly because of its simpler concept. Each pro-
cess layout has its own set of views, and message handling is not dependent on Windows idle
time. The approach requires a lot less synchronization, which also makes SimGT2003 faster than
RobotControl. On the other hand, there are a lot of things that cannot be done with SimGT2003,
e. g. creating color tables, setting camera parameters, all kinds of OpenGL visualizations, etc.
And, in fact, if very different tasks have to be performed in a row as, e. g., during a contest, the
mouse-enabled interface of RobotControl is much more comfortable.

156

I.2. GETTING STARTED 157

I.2 Getting Started

SimGT2003 can either be started directly from the Windows Explorer (fromGT2003\Bin), from
Microsoft Developer Studio, or by starting a scene description file1. In the first case, a scene de-
scription file has to be opened manually, whereas it will already be loaded in the latter two cases.
When a simulation is started for the first time and no layout has been patched into the Windows
registry, only the editor window will show up in the main window. SelectSimulation|Start to run
the simulation. TheTree Viewwill appear. AScene Viewshowing the soccer field can be opened
by double-clickingWORLD GT2003. However, the scale of the display will not be appropriate.
After selectingView|Zoom|4x andView|Perspective Distortion|Level 1the field will fit into the
window. In addition, the presentation can be simplified by reducing theView|Detail Level. Please
note that there also exist keyboard shortcuts and toolbar buttons for most commands.

After starting a simulation, a script file may automatically be executed, setting up the robots
as desired. The name of the script file is part of the scene description file. Together with the
ability of SimRobot to store the window layout, the software can be configured to always start
with a setup suitable for a certain task.

Although any object in theTree Viewcan be opened, only displaying certain entries in the
object tree makes sense, namely theWORLD, the objects in the grouprobots, and allVALUEs of
objects starting withVIEW.

I.3 Views

I.3.1 Scene View

The Scene Viewappears if theWORLDis opened from theTree View. As stated above, a 4x-
zoom and a level 1 perspective distortion are ideal for displaying the field. The view can be
rotated around two axes, and it supports several mouse operations:

• If a robot is clicked between its forelegs (on the field plane), it can be dragged to another
position.

• If a robot is clicked between its hind legs, it can be rotated around its body center, i. e. the
middle between its forelegs.

• If an active robot (see below) is double-clicked, it is the currently selected robot, i. e. the
robot console commands are sent to.

• The ball can be dragged around. Note that itsclick positionis on the field plane.

1This will only work if SimGT2003 was started at least once before.

158 APPENDIX I. SIMGT2003 USAGE

I.3.2 Robot View

A Scene Viewcontaining a single robot can be opened by double-clicking aVEHICLE in the
sub-treerobotsof the Tree View. In such a view, the robot is displayed centered, and it can be
zoomed to fill the entire window. This allows seeing more details of the robot, e. g. the state of
its LEDs. The view supports four different mouse actions:

• If the back of the robot is clicked, this simulates an activated back switch of the robot. A
second click will deactivate the switch.

• If the back area of the top surface of the head is clicked, this simulates an activated back
head switch. Again, a second click will deactivate the switch.

• If the front area of the top surface of the head is clicked, this simulates an activated front
head switch. It is deactivated by a second click.

• A double-click in the window throws the robot on its side. Note that this can only be seen
in the globalScene View. In the robot view, the fact that the robot felt down is visualized
by hiding its tricot. A second double-click will bring the robot back on its feet.

I.3.3 Information Views

In SimGT2003,information viewsare used to display debug drawings. These are generated by
the robot control program, and they are sent to SimGT2003 viamessage queues. In SimGT2003,
the views are defined in the source code. They are instantiated separately for each robot. All views
in the current code are defined inGT2003\Src\Platform\Win32\SimRobot\RobotConsole.cpp.
There are three kinds of views related to information received from robots:image views, field
views, andXabsl2 views. Field and image views display debug drawings received from the robot,
whereas the Xabsl2 views print text information sent by the Xabsl2 behavior control on the robot.

I.3.3.1 Image Views

An image view displays information in the system of coordinates of a camera image. It is defined
by giving it a name and by listing the debug drawings that will be part of the view. The identifiers
of all debug drawings are defined in classDrawings. Two special elements can be part of an
image view that are not debug drawings:imageand colorClassImage. They either show the
camera image or the segmented camera image, respectively, and must be the first entries in the
list, because they will occlude anything drawn before.

Note that only information can be drawn that is actually sent by the robot, i. e. the correspond-
ing debug requests must have been set. To receive images, either the debug keyssendImageor
sendJPEGImagemust have been activated. To display a certain debug drawingXYZ, the debug
keysendXYZdrawingmust be set.

For instance, the viewimageis defined as:

I.3. VIEWS 159

IMAGE_VIEW(image)
Drawings::image,
Drawings::imageProcessor_horizon,
Drawings::imageProcessor_scanLines,
Drawings::perceptCollection,
Drawings::selfLocator

END_VIEW(image)

To display all this information, console commands (cf. Sect.I.5) such as the following are
also required:

dk sendJPEGImage every 100 ms
dk sendPercepts every 100 ms
dk send_imageProcessor_horizon_drawing every 100 ms
dk_send_imageProcessor_scanLines_drawing every 100 ms
dk send_selfLocator_drawing every 100 ms

I.3.3.2 Field Views

A field view displays information in the system of coordinates of the soccer field. It is defined
similar to image views. Two special elements can be part of a field view that are not debug
drawings:fieldPolygonsandfieldLines. The field polygons are green, sky-blue and yellow areas
visualizing the field and goal areas. The field lines are the field boundary and all lines. If used, the
field polygons must be the first entry in the list of drawings, because they will occlude anything
drawn before.

For instance, the viewworldStateis defined as:

FIELD_VIEW(worldState)
Drawings::fieldPolygons,
Drawings::fieldLines,
Drawings::selfLocatorField,
Drawings::worldState,
Drawings::percepts_ballFlagsGoalsField

END_VIEW(worldState)

To display all this information, console commands (cf. Sect.I.5) such as the following are
also required:

dk send_selfLocatorField_drawing every 500 ms
dk sendPercepts on
dk sendWorldState on

Please note that the Monte-Carlo drawing is sent less often, because it is pretty large.

160 APPENDIX I. SIMGT2003 USAGE

I.3.3.3 Xabsl2 Views

A single Xabsl2 view is part of each set of views. The information displayed is configured
by the console commandsxis and xos (cf. Sect. I.5.3). In addition, the debug keysendX-
absl2DebugMessagesmust have been set, and a Xabsl2 behavior that matches the one loaded
by the console commandxlb (cf. Sect.I.5.3) must be active on the robot.

set behavior control solution to GermanTeam 2003
sr BehaviorControl GT2003-soccer

load behavior of the GermanTeam 2003
xlb gt03

request Xabsl2 debug messages
dk sendXabsl2DebugMessages on

show some symbols
xis ball.seen.distance on
xis ball.time-since-last-seen on
xos head-control-mode on

set output symbol
xos head-control-mode head-control-mode.search-for-ball

I.4 Scene Description Files

The language of scene description files is documented in the online help file of SimRobot. How-
ever, there are some facts that are special in SimGT2003:

• At the top of a scene description, just belowWORLD, the instructionREMARKcan be
used to specify the name of the script that will be executed when the simulator is started.
A script file contains commands as specified below, one command per line. The default
location for scripts isGT2003\Config\Scenes, their default extension is.con. If no file is
specified, SimGT2003 will useGT2003\Config\Scenes\console.conif it exists.

• Near the end of a scene description file, there is a group calledrobots. It contains allactive
robots, i. e. robots for which processes will be created.

• Below the grouprobots, there is the groupextras. It containspassiverobots, i. e. robots
which just stand around, but which are not controlled by a program. Passive robots can be
activated by moving their definition to the grouprobots.

• Below that, there is the groupballs. It contains the balls, i. e. normally a single ball, but it
can also contain more of them if necessary, e. g. for the ball challenge in 2002.

I.5. CONSOLE COMMANDS 161

A lot of scene description files can be found inGT2003\Config\Scenes. Please note that there
are two types of scene description files: the ones required to simulate one or more robots (about
20 KB in size), and the ones that are sufficient to connect to a physical robot or to replay a log
file (about 1 KB in size).

I.5 Console Commands

Console commands can either be directly typed into the console window or they can be executed
from a script file. There exist three different kinds of commands. First, two commands can only
be used in a script file that is executed when the simulation is started. Second,global commands
change the state of the whole simulation, or they are always sent to all robots. Third,robot
commandsonly have an impact on the set of currentlyselected robots.

I.5.1 Initialization Commands

sc [gameManager] (<a.b.c.d> | <a.b.c> <d> {<d>}). Starts a wireless connection to real
robots. The syntax is very similar to the one of the start-script of the router). The command
will start the router in the background and will display its messages in the console window.
It should only be used once. It will add new robots to the list of available robots (named
by the least significant byte of their IP-addresses), and for each of these robots, a full
set of views is added to theTree View. Please note that physical robots only send debug
drawings on demand, so the views will remain empty until the drawings are requested
by the appropriate debug keys. When the simulation is reset or SimGT2003 is exited, the
router will be terminated.

sl <name> <file>. Replays a log file. The command will instantiate a complete set of processes
and views. The processes will be fed with the content of the log file. The first parameter
of the command defines the name of the virtual robot. This name can be used in therobot
command (see below), and all views of this particular virtual robot will be identified by
this name in theTree View. The second parameter specifies the name and path of the log
file. If no path is given,GT2003\Config\Logsis used as default. Otherwise, the full path is
used..log is the default extension of log files. It will be automatically added if no extension
is given.

Please note that the backslash character has to be doubled to be recognized by the system,
e. g. writesl AIBO1 c:\\logs\\hallo to load the log filec:\logs\hallo.log.

When replaying a log file, the replay can only be stopped by halting the simulation, i. e.
by pressing thestart/stopbutton. To avoid the loss of log data during the replay, select the
simulation time mode, i. e. execute the commandst on(see below).

162 APPENDIX I. SIMGT2003 USAGE

I.5.2 Global Commands

call <file>. Executes a script file. A script file contains commands as specified here, one com-
mand per line. The default location for scripts isGT2003\Config\Scenes, their default
extension is.con.

cls. Clears the console window.

echo<text>. Print text into the console window. The command is useful in script files to print
commands that can later be activated manually by pressing theenterkey.

gc reset| ready | playing | final | kickOff (blue | red) [<blueScore> <redScore>]. Game
control. The command is sent to all robots. ThekickOff-command is interpreted according
to the team color of each robot.gc resetresets the score counters.

help | ?. Displays a help text.

jbc <button> <command>. Sets a joystick button command. The first parameter specifies the
joystick button by its number between 1 and 32. Any text after this first parameter is part
of the second parameter. The second parameter can contain any legal script command. The
command will be executed when the corresponding button is pressed. While a joystick
button is pressed, no changes in the walking direction of the robot will be accepted. A
typical command to be assigned to a button is the executing of a special action, e. g.jbc 1
mr unswBashOptimizedwill try to kick the ball when button 1 is pressed.

jhc tilt | pan | roll. Set head axis to be controlled by the accelerator lever of the joystick. The
other two axes will be controlled by the coolie head. By default, the pan axis is controlled
by the accelerator lever.

robot ? | all | <name> {<name>}. Connects the console window to a set ofselected robots.
All commands in next section are only sent to the selected robots. The commandrobot ?
displays a list of all robot names. To select a single simulated robot, it can also be double-
clicked in theScene View. To select them all, typerobot all.

st off | on. Switches the simulation of time on or off. Without the simulation of time, all calls to
SystemCall::getCurrentSystemTime()will return the real time of the Windows PC. How-
ever, as the simulator runs slower than real-time, the simulated robots will receive less
sensor readings than the real ones. If the simulation of time is switched on, each step of
the simulator will advance the time by 8 ms. Thus,SimGT2003simulates real-time, but it
is running slower. By default this option is switched off.

<text>. Comment. Useful in script files.

I.5. CONSOLE COMMANDS 163

I.5.3 Robot Commands

ci off | on. Switches the calculation of images on or off. The simulation of the robot’s camera
image costs a lot of time, especially if multiple robots are simulated. In some development
situations, it is a better solution to switch off all low level processing of the robots and
to work with oracled world states, i. e. world states that are directly delivered by the sim-
ulator. In such a case there is no need to waste processing power by calculating camera
images. Therefore, it can be switched off. However, by default this option is switched on.
Note that this command only has an effect on simulated robots.

dk ? | (<key> off | on | <number> | every<number> [ms]). Sets a debug key. The Ger-
manTeam uses so-called debug keys to switch several options on or off at runtime. Type
dk ?to get a list of all available debug keys. Debug keys can be activated permanently, for
a certain number of times, or with a certain frequency, either on a counter basis or on time.
All debug keys are switched off by default.

hcm ? | <mode>. Sets the head control mode. Typehcm ?to get a list of all available head
control modes.

hmr <tilt > <pan> <roll > <mouth>. Sends a head motion request, i. e. it sets the joint an-
gles of the three axes of the head and the opening angle of the mouth. This will only work
if the actual head control mode isnone. The angles have to be specified in degrees.

log start | stop | clear | save<file>. Records a log file.log start starts or continues recording
all data received from the robot.log stopstops the recording.log clearremoves all recorded
data from memory.log savestores the data recorded to the log file with the name specified.
If the file already exists, it will be replaced. If no path is given,GT2003\Config\Logs is
used as default. Otherwise, the full path is used..log is the default extension of log files. It
will be automatically added if no extension is given.

mr ? | <type> [<x> <y> <r>]. Sends a motion request. This will only work if nobehavior
control is active. Typemr ? to get a list of all available motion requests. Walk motions
also have to be parameterized by the motion speeds in forward/backward, left/right, and
clockwise/counterclockwise directions. Translational speeds are specified in millimeters
per second; the rotational speed has to be given in degrees per second.

msg off | on. Switches the output of text messages on or off. All processes can send text mes-
sages via their debug queues to the console window. As this can disturb entering text into
the console window, it can be switched off. However, by default text messages are printed.

pr continue | illegalDefender| obstruction | keeperCharged| ballHolding. Penalize robot.
The command sends one of the four penalties to all selected robots, or it signals them
to continue with the game after a penalty.

qfr queue | replace| reject | collect<seconds> | save<seconds>. Send queue fill request.
This request defines the mode how the message queue from the debug process to the PC is
handled.

164 APPENDIX I. SIMGT2003 USAGE

queue is the default mode. It will insert all messages received by the debug process from
other processes into the queue, and send it as soon as possible to the PC. If more
messages are received than can be sent to the PC, the queue will overflow2.

replace. If the mode is set toreplace, only the newest message of each type is preserved in
the queue3. On the one hand, the queue cannot overflow, on the other hand, messages
are lost, e. g. it is not possible to receive 25 images per second from the robot.

reject will not enter any messages into the queue to the PC. Therefore, the PC will not
receive any messages.

collect<seconds>. This mode sends messages to the PC for the specified number of
seconds. After that period of time, no further messages will be sent until another
queue fill request is sent.

save<seconds>. This mode collects messages for the specified number of seconds,
and it will afterwards store them on the memory stick as a log file underOPEN-
R/APP/CONF/LOGFILE.LOG. No messages will be sent to the PC until another
queue fill request is sent.

sg ?| <id> {<num>}. Sends generic debug data. Generic debug data consists of anid and up
to ten decimal numbers. Typesg ?to list all generic debug data ids.

so off | on. Switch sending oforacled world stateson or off.Oracled world statesare normally
sent to all processes. This allows the modules calculating the world state to be switched
off without a failure of the robot. However, the option can produce confusing results if
parts of the world state are only sometimes calculated by the robot. Then, the world state
sometimes results from the robot’s own calculations and sometimes from the simulator.
Therefore, sending oracled world states to the robots can be switched off. By default, it is
switched on. Note that this command only has an effect on simulated robots.

sr ? | <task> (? | <solution>). Sends a solution request. This command allows switching the
solutions for a certain task. Typesr ? to get a list of all tasks. To get the solutions for a
certain task, typesr <task> ?.

tr ? | <type>. Sends a tail request. Typetr ? to see all available tail requests.

xbb ? | unchanged| <behavior> {<num>}. Selects a Xabsl2 basic behavior. The command
suppresses the basic behavior currently selected by the Xabsl2 engine and replaces it with
the behavior specified by this command. Typexbb ?to list all available Xabsl2 basic be-
haviors. Some basic behaviors can be parameterized by a list of decimal numbers, e. g.
xbb go-to-point 1600 0 0to walk to position (1600 mm, 0 mm, 0◦). Usexbb unchangedto
switch back to the basic behavior currently selected by the Xabsl2 engine. The command
xbbonly works if a Xabsl2 behavior was loaded with the commandxlb (see below).

2Currently, the robot crashes if the queue overflows.
3Currently, this mode does not reasonably work together with debug drawings, because newer drawing com-

mands replace the older ones.

I.6. EXAMPLES 165

xis ? | <inputSymbol> (on | off). Switches the visualization of a Xabsl2 input symbol in the
Xabsl2 Viewon or off. Typexis ?to list all available Xabsl2 input symbols. The command
xisonly works if a Xabsl2 behavior was loaded with the commandxlb (see below).

xlb ? | <name>. Load a Xabsl2 behavior. The command loads the symbols for the specified be-
havior and will send the compiled version of the behavior to the robot. The command must
be executed before any other Xabsl2 command and theXabsl2 Viewwill work. Type xlb ?
to list all available behaviors. Please note that the behavior loaded has to match the solu-
tion for behavior controlselected on the robot. To use theXabsl2 View, the corresponding
debug key has to be set, i. e.dk sendXabsl2DebugMessages on.

xo ? | unchanged| <option> {<num>}. Selects a Xabsl2 option. The command suppresses
the option currently selected by the Xabsl2 engine and replaces it with the option specified
by this command. Some options can be parameterized by a list of decimal numbers, e. g.
xo go-to-kickoff-position 2000 0to walk to position (2000 mm, 0 mm). Typexo ?to list all
available Xabsl2 options. Usexo unchangedto switch back to the option currently selected
by the Xabsl2 engine. The commandxo only works if a Xabsl2 behavior was loaded with
the commandxlb (see above).

xos ?| <outputSymbol> (on | off | ? | unchanged| <value>). Show or set a Xabsl2 output
symbol. The command can either switch the visualization of a Xabsl2 output symbol in
the Xabsl2 Viewon or off, or it can suppress the state of an output symbol currently set
by the Xabsl2 engine and replace it with the value specified by this command. Typexos ?
to list all available Xabsl2 output symbols. To get the available states for a certain output
symbol, typesr <outputSymbol> ?. Usexos<outputSymbol> unchangedto switch back
to the state currently set by the Xabsl2 engine. The commandxosonly works if a Xabsl2
behavior was loaded with the commandxlb (see above).

I.6 Examples

This section presents some examples of script files to automate various tasks:

I.6.1 Recording a Log File

To record a log file, the robot shall send images including the camera matrix and odometry data.
The script connects to a robot and configures it to do so. In addition, it prints several useful
commands into the console window, so they can be executed by simply setting the caret in the
corresponding line and pressing theenterkey. As these lines will be printed before the messages
coming from the router, one has to scroll to the beginning of the console window to use them.
Note that the file name behind the linelog saveis missing. Therefore, a name has to be provided
to successfully execute this command.

connect to a robot

166 APPENDIX I. SIMGT2003 USAGE

sc 172.21.3.201

suppress messages
msg off

disable everything but sensor data processor and head control
sr SensorDataProcessor Default
sr ImageProcessor disabled
sr SelfLocator disabled
sr BallLocator disabled
sr PlayersLocator disabled
sr RobotStateDetector disabled
sr BehaviorControl disabled
sr HeadControl GT2003

stop motion
mr normal 0 0 0
hcm none
hmr 0 0 0 0

queue real-time mode, send JPEG images and odometry
qfr replace
dk sendJPEGImage on
dk sendOdometryData on

print some useful commands
echo hcm searchForLandmarks
echo hcm searchForBall
echo hcm none
echo hmr 0 0 0 0
echo log start
echo log stop
echo log save
echo log clear

I.6.2 Replaying a Log File

The example script shown was used to test the LinesImageProcessor2/LinesSelfLocator
pair. It instantiates a robot namedLOG1 that is fed by the data stored in the log file
GT2003\Config\Logs\myLogFile.log.

replay a log file
sl LOG1 myLogFile

I.6. EXAMPLES 167

suppress messages
msg off

simulation time on, otherwise log data may be skipped
st on

configure modules. Important: sensor data processor disabled
sr SensorDataProcessor disabled
sr ImageProcessor GT2003
sr SelfLocator GT2003
sr BallLocator PIDSmoothed
sr PlayersLocator GO2003
sr RobotStateDetector disabled
sr BehaviorControl disabled
sr HeadControl disabled

request some drawings
dk send_imageProcessor_horizon_drawing on
dk send_imageProcessor_scanLines_drawing on
dk send_selfLocator_drawing on
dk send_selfLocatorField_drawing on

I.6.3 Remote Control

This script demonstrates joystick remote control of the robot.

connect to a robot
sc 172.21.3.201

suppress messages
msg off

switch off everything but motion
sr ImageProcessor disabled
sr SelfLocator disabled
sr BallLocator disabled
sr PlayersLocator disabled
sr BehaviorControl disabled

stop motion
mr normal 0 0 0
hcm none
hmr 0 0 0 0
tr noTailWag

168 APPENDIX I. SIMGT2003 USAGE

queue real-time mode, send JPEG images
qfr replace
dk sendJPEGImage on

use accelerator lever to control head pan
jhc pan

assign actions to joystick buttons
jbc 1 mr unswBashOptimized
jbc 2 mr leftHeadKick
jbc 3 mr rightHeadKick
jbc 4 mr sit
jbc 5 mr scratchHead
jbc 6 tr wagHorizontalFast
jbc 7 tr noTailWag

Appendix J

RobotControl Usage

This chapter describes how to use the RobotControl application. As RobotControl is a very com-
plex system, not all features will be described. But it will help to get an overview about the
capabilities of the program.

J.1 Starting RobotControl

Requirements. RobotControl needs at least version 4.0 of the Microsoft Internet Explorer in-
stalled on the system to work properly. In addition, it is important that RobotControl is started
from a directory underGT2003.

After the First Start The application looks a little bit strange. No child windows appear and all
tool bars are pushed together. But the toolbars can be moved with the mouse to be distributed
over more rows. To switch toolbars on or off, right-click on the toolbar area and select the visible
toolbars from the pop-up menu. Dialogs can be opened by using the “View” menu or, for some of
them, by using the “Views” toolbar. Note that the window layout will not be restored during the
next start of the application unless it is saved using the “configuration” toolbar (cf. Sect.J.2.2).

J.2 Application Framework

The following toolbars and dialogs form the framework of the application.

J.2.1 The Debug Keys Toolbar

Figure J.1: The Debug Keys Toolbar

169

170 APPENDIX J. ROBOTCONTROL USAGE

The Debug Keys Toolbar(cf. Fig. J.1) is used to switch debug keys on or off (cf. App.E.3).
Each debug key can be parameterized in four different ways describing how often and in which
frequency it will be enabled.

The combo box contains all available debug keys. To edit the properties of a debug key, select
the key from the list and use on of these buttons:

Disabled. The debug key is disabled.

Always. The debug key is always enabled.

n times. The debug key is enabled forn times, i. e., it will returntrue the nextn frames, and
falseafterwards.n has to be entered into the edit control before the button is pressed.

Every n times. The debug key is enabled everyn-th frame, i. e., it will returntrue everyn-th
call, andfalsein between.

Every n ms. The debug key is enabled everyn milliseconds, i. e., it will returnfalseuntil at least
n milliseconds passed since the last time it returnedtrue.

Disable All. Disables all debug keys.

There are five buttons to select how the outgoing message queue is treated on the robot:

Immediately. All outgoing messages are sent immediately via the wireless network.

Realtime. This mode allows dropping messages if there is not enough time to transmit. This is
useful, e. g., for sending as many images as possible without slowing down the robot.

Send aftern seconds.The transmission of outgoing messages is delayed forn seconds. The
value ofn is set with the attached edit field.

Save to stick aftern seconds.Instead of transmitting outgoing messages via the wireless net-
work, they are stored on the robot’s memory stick after a delay ofn seconds. A log file
is created on the memory stick which afterwards can be replayed using theLog Player
Toolbar (cf. Sect.J.2.4). The value ofn is set with the attached edit field.

Reject all. All outgoing messages are dropped.

There are two debug key tables in RobotControl, one for a physical robot connected via the
wireless network, and one for the selected simulated one. With the buttonsEdit table for robot
andEdit table for local processesone can select which of them is edited.Sendsends both debug
key tables to the proper destinations by putting them into message queues, i. e. nothing will
change as long asSendhas not been pressed.

J.2. APPLICATION FRAMEWORK 171

Figure J.2: The Configuration Toolbar

J.2.2 The Configuration Toolbar

TheConfiguration Toolbar(cf. Fig.J.2) is intended to manage different configurations of Robot-
Control. Up to now, it only works for window layouts.

As it is sometimes very difficult to arrange the dialogs and toolbars in the main window for
efficient use, theConfiguration Toolbarallows saving window layouts to the Windows registry.
With theNewbutton, new layouts can be created from the current one,Renamerenames a layout,
andDeletedeletes a layout. Note that changes in the layout are not automatically saved. Instead,
this has to be done manually by pressing theSavebutton. One can select between different
layouts by selecting a different entry in the combo box.

J.2.3 The Settings Dialog

Figure J.3: The Settings Dialog: RobotControl’s most often used dialog

With theSettings Dialog(cf. Fig. J.3), solutions for modules (cf. Sect.3) running on the robot
or on the PC can be switched. A certain combination of solutions is called a setting and can be
stored. All settings are stored inGT2003\Config\Settings. The default solution for each module
is marked with an asterisk.

172 APPENDIX J. ROBOTCONTROL USAGE

Figure J.4: The Log Player Toolbar

J.2.4 The Log Player Toolbar

In RobotControl, log files can store a set of messages of any kind used to communicate between
modules or between dialogs or toolbars and modules, e. g. it is possible to record pictures sent
by a robot in a log file, and then play that log file several times to test different kinds of image
processing with exactly the same input data.

The Log Player Toolbar(cf. Fig. J.4) is used to record, play, and modify such log files.
Its buttons should be known from other players, e. g. CD-players.Playing a log file sends all
messages in it to all running modules in RobotControl as well as to all dialogs that can handle
that type of message.Step forwardandStep backwarddo the same with single messages.

Recording appends all messages sent from a robot via the wireless network to the actual log
file (in memory) that can besaved afterwards.

J.2.5 WLan Toolbar

Figure J.5: The WLan Toolbar

TheWLan Toolbar(cf. Fig.J.5) is used to create, edit, and switch between different wireless net-
work configurations. It also allows connecting to (and of course disconnecting from) all enabled
robots in the current wireless network configuration.

Creating new and modifying existing wireless network configurations opens the dialog shown
in figureJ.6. Connections to robots are established via the router (cf. Sect.5.3). The dialog allows
all relevant parameters to be specified: the IP addresses of the robots as well as the IP address of
the router and its base port that is used to map between port numbers on the router and robot IP
addresses to be routed to.

Furthermore settings can be edited such as the wireless networkESSID, the Netmask, the
APMode, theWepKey, and theChannel. Each robot IP has acp-button. Pushing that button calls
copyfiles.bashwith all parameters visible in the dialog. So using this dialog it is possible to keep
the settings written to memory sticks and the settings used to connect to robots consistent.

J.2.6 Game Toolbar

With theGame Toolbar(cf. Fig.J.7) the game control data can be generated and sent. So Sony’s
RoboCup Game Manager is not needed to test behaviors.

J.3. VISUALIZATION 173

Figure J.6: The WLan Connection Parameters Dialog

Figure J.7: The Game Toolbar

Penalties are set by selecting the player from the combo box and pressing one of the four
penalty buttons to the right. A penalty is released by pushing theplaying button. In theready
state, all penalties are reset.

The slider at the right adjusts thegame speed(from 0.1 to 1). This allows for testing behaviors
in “slow motion”. The value is multiplied to the translation vector of the motion request processed
by theMotionControlmodule.

J.3 Visualization

J.3.1 Image Viewer and Large Image Viewer

The two image viewer dialogs (cf. Fig.J.8) display images and debug drawings from thequeue-
ToGUI (cf. Fig.5.3) so images from the robot, the log player, or the simulator are displayed. The
Image Viewerhas space for eight images with a fixed size. TheLarge Image Viewershows only
one image and is sizable. With the context menu different types of images and different debug
drawings can be selected. The context menu also containsCopy drawingsandCopy image and

174 APPENDIX J. ROBOTCONTROL USAGE

Figure J.8: Image Viewer and Large Image Viewer Dialog

drawingswhich copies only the debug drawings as a vector graphic or the image with the draw-
ings as a bitmap to the clipboard. Important: to see a debug drawing created in a special solution
of some module (cf. Sect.3), this solution has to be selected (cf. Sect.J.2.3).

J.3.2 Field View and Radar Viewer

MonteCarlo
particle

player

flag

goal
ball

point on a
field line

simulated robot

vision of the simulated robot

Figure J.9: RobotControl’s Field View and the Radar Viewer Dialog

The Field Viewand theRadar Viewer(cf. Fig. J.9) both display percept drawings. TheRadar
Viewer display the percepts relative to the robot. TheField Viewdraws the percepts based on
the robot’s localization on the field. The field view is also used for world state and localization

J.3. VISUALIZATION 175

drawings. In both dialogs the drawings can be selected with the context menu.Copy drawings
copies the drawings as a vector graphic to the clipboard.

J.3.3 Radar Viewer 3D

Figure J.10: The Radar Viewer 3D

The Radar Viewer 3D(cf. Fig. J.10) provides a 3D visualization for percepts, but also for
the image. The percepts are displayed in the 3D space after a transformation of the percepts into
the robot’s system coordinates of using the camera matrix. The sliders can be used to adjust the
position of the camera.

J.3.4 Color Space Dialog

TheColor Space Dialog(cf. Fig. J.11) visualizes how an image uses the YUV color space, and
it displays either the y, u, or v channel as a height map. By dragging with the left mouse button
the 3-D scene can be rotated. With the context menu the type of view can be selected.

J.3.5 Value History Dialog

TheValue History Dialog(cf. Fig.J.12) allows displaying different values over time. This helps,
e. g., to check the stability of a ball modeling algorithm. The values that shall be traced can be
selected from the context menu. The time range that is displayed can be changed using the slider
at the top of the dialog.

176 APPENDIX J. ROBOTCONTROL USAGE

Figure J.11: The Color Space Dialog showing the u-channel of an image as a height map.

J.3.6 Time Diagram Dialog

The Time Diagram Dialog(cf. Fig. J.13) visualizes the times which different modules need
for their execution in terms of bars. The values next to each bar show the measured time in
milliseconds and the frequency (in times per second).

Times can be measured on the robot by selectingstop times on robot. If the simulator is used
(cf. Sect.J.4), the times can be measured on the computer by selectingstop times local. The
option view log filesdisplays the measured times of recorded log files. Since the times for the
execution of the modules can vary very much from one measurement to the next one, the motion
of the time-indicators can be smoothed by using average values. The average can be chosen
between 2 and 500 measurements. Clicking the right mouse button in the dialog opens a context
menu in which the modules of interest can be selected. This menu also offers the option to export
the values to a file in a comma-separated format.

The design of the dialog varies, depending on its size and the number of the selected modules.

J.4 The Simulator

The simulator is a very powerful extension for RobotControl. As SimGT2003 (cf. Sect.5.1), it
is based onSimRobot. The simulator offers a lot of possibilities to develop, test, and debug new
algorithms or alternative solutions for modules without using a robot.

As shown in FigureJ.15, all relevant objects for robot-soccer are included in the simulation:
the field (including landmarks, goals, lines, etc.), players, and the ball. Other objects (e. g. for
challenges) can be added with ease. The image created depends on the position of the robot and
also on the current angles of the head and the leg joints.

For developing modules which result in movement of the robots, e. g. behavior, the object
viewer (cf. Fig.J.15) shows the complete field with all simulated objects. It can be activated by
the buttonObject Viewerof the simulator toolbar (cf. Fig.J.14). The vantage point of the observer

J.4. THE SIMULATOR 177

Figure J.12: The Value History Dialog

Figure J.13: The Time Diagram Dialog

is variable and can be changed by moving the bars under and beneath the scene displayed. The
zooming level, detail level, and the perspective distortion can be adjusted by using the appropriate
buttons in the toolbar. Besides these options, the toolbar contains buttons to start and reset the
simulation, and to force a step-by-step mode. The touch sensors at the back and the head of the
robot can be “virtually pressed” by the buttons marked with an arrow at the according position.
One of those buttons pretends the robot to be fallen aside.

A very helpful feature of the simulator is the oracle. It lets the robot know everything of
its environment exactly. This can help to develop modules without being dependent on other
modules. For example a behavior can be implemented and tested without a self-locator. The
buttonsend oracleactivates this function.

Up to four robots of one team can be simulated at the same time. To send commands or
receive information from a robot, connect to it by choosing it out of the list atRobotsin the
menu bar. This menu also includes the option to generate images for the connected robot or all
simulated robots. Be aware, that generating images for all robots needs a lot of computing power.
An entry in the status line of RobotControl shows the currently connected robot.

178 APPENDIX J. ROBOTCONTROL USAGE

Figure J.14: Toolbar of the Simulator

a) b)

Figure J.15: a) Simulated image and b) Object Viewer of the simulator

J.5 Debug Interfaces for Modules

For some of the modules specific debug interfaces were developed.

J.5.1 Xabsl2 Behavior Tester

The Xabsl2 Behavior Testeris a debugging interface to the behavior modules derived from
Xabsl2BehaviorControl(cf. Sect.3.8.1). One can view almost all internal states of the engine.
OptionsandBasic BehaviorsandOutput Symbolscan be selected manually for separate testing.

With the check boxtest on robotin the right upper corner one can set whether the behavior
shall be tested on the robot or in the simulator.

In the topmost combo box an option or basic behavior can be selected. If an option is selected
it is used as the root option. The execution of the option tree starts from that option. If a basic
behavior is selected only this behavior gets executed without any option tree being traversed.
This allows testing single options and basic behaviors separately. If the option or basic behavior
selected has parameters these can be entered into the edit fields below.

The following two combo boxes allow altering output symbols manually. The left box selects
an output symbol while the right one sets its value. If this is done the value generated through
the engine by traversing the option activation path is ignored and overwritten with the set value.
This is useful for testing output symbols separately.

At the top of the white areaAgentshows the name of the active Xabsl2 agent. Next theOption
Activation Pathis displayed. The first column shows all the activated options. The second column

J.5. DEBUG INTERFACES FOR MODULES 179

Figure J.16: The Xabsl2 Behavior Tester Dialog

shows the time how long these options are already activated. Then in the third column the active
state of each option, and in the fourth column the time how long the state is already active, are
displayed. If an activated option is parameterized its current parameter values are shown below.

Then theActive Basic Behaviorshows, which basic behavior is currently activated along
with its parameter values. Themotion requestshows the motion request that resulted from the
execution of the basic behavior.

The Input Symbolssection shows the current values of the input symbols selected. The se-
lection, which symbols shall be displayed, can be done with the context menu of the dialog. The
same applies toOutput Symbols.

At last, in the context menu exists an entryReload Files. The dialog rereads the debugging
symbols and sends the intermediate code to the robot and to the local processes, where the engine
is newly created. That allows the testing of changes in the behavior without rebooting the robot
or restartingRobotControl.

J.5.2 Motion Tester Dialog

With theMotion Tester Dialog(cf. Fig. J.17) it is possible to sendMotionRequestsfrom Robot-
Control to the robot.

In the upper area of the dialog the different modes stand, getup, walk, or special action can
be chosen. In walk mode the velocities inx andy direction and the rotation speed can easily be

180 APPENDIX J. ROBOTCONTROL USAGE

a) b)

Figure J.17: The Motion Tester Dialog with a) walking and b) special actions

set by sliders. In special action mode the different special actions (i. e. kicks or joy dance) can be
chosen from the select box. In the lower area of the dialog the movement of the tail can be set.
Possible settings are, e. g., wag horizontally or in parallel to the ground (based on the evaluation
of the gravity sensors).

To send theMotionRequestto the robot, you have to push thesendbutton.
For another way to control the robots motion, theJoystick Motion Tester(cf. Sect.J.5.5) is

available.

J.5.3 Head Motion Tester Dialog

Figure J.18: The Head Motion Tester Dialog

The Head Motion Tester Dialog(cf. Fig. J.18) is handy to test the head control module, it is
possible to sendHeadMotionRequestsor to set theHeadControlModefrom RobotControl.

The desiredHeadControlModeis selectable from a list of all available modes. Some modes
require additional parameters (i. e. the coordinates of a point to look at). These can be set in the
appearing input elements.

In HeadMotionRequestmode, the desired joint values can be set by sliders.

J.5. DEBUG INTERFACES FOR MODULES 181

J.5.4 Mof Tester Dialog

Figure J.19: The Mof Tester Dialog

TheMof Tester Dialog(cf. Fig.J.19) is used to write and test new motions. Motions are specified
in a description language (cf. Sect.5.4). Joint data lines from these descriptions may be entered
into the input field of the dialog and can be sent to the robot via the wireless network at runtime.

For this dialog to work it is necessary that the moduleDebugMotionControlis running on
the robot instead of the default motion control module. The debug module will not execute nor-
mal motion requests from behavior control but rather wait for debug messages sent from the
MofTesterdialog. It is activated on the robot by switching module solutions with theSettings
Dialog (cf. Sect.J.2.3).

Theexecutebutton parses the input field for lines containing joint data information and sends
the sequence to the robot. If theloop check box is activated when pressingexecutethe sequence
will be executed repeatedly.

Thestopbutton stops any sequence currently being executed.
The readbutton provides a very handy tool when creating new motions. It reads the robot’s

current joint angles from sensor data and puts them into a new line in the input field. This is
extremely useful in combination with the stay-as-forced motion mode theDebugMotionControl
module provides while not executing joint data sequences. In stay-as-forced mode all motors
are controlled with feedback from sensor input, and therefore they always maintain their current
position. In this mode joints may be moved manually and the resulting joint angles can be read
into theMof Tester Dialog.

J.5.5 Joystick Motion Tester Dialog

Figure J.20: The Joystick Motion Tester Dialog

182 APPENDIX J. ROBOTCONTROL USAGE

TheJoystick Motion Tester Dialog(cf. Fig. J.20) is used to control a robot that is connected via
the wireless network by joystick. Using such an analog input device is, e. g., useful for testing
new walking engines or parameters or just walking stability. The primary aim is not a complete
remote control, but only moving the robot around (and optionally moving its head) while all
other modules keep running autonomously.

This dialog is only tested with an MS Sidewinder Precision 2 USB joystick, but should work
with any joystick providing three axes, an accelerator, and eight buttons. After the joystick has
been attached, theuse joystickbox has to be checked to start using this dialog. If no joystick
seems to be connected, the dialog will refuse to work.

The joystick controls the walking engine of a robot connected with RobotControl via the
wireless network. The direction the robot should move to according to the state of the joystick is
visualized in the dialog. Red text inJoystick Motion Tester Dialogsignals that current changes
have not been executed yet, black text shows the actual states or commands, and gray text visu-
alizes states or commands that were sent last but are inactive at the moment.

The buttons 1 to 4 can be used for different kicks, button 7 to start thegetupmotion and button
5 to switch from walking control to head control. As long as button 5 is pressed, the joystick will
control the head instead of the walking. That will be visualized by the dialog, too.

To ease the use of the dialog for different people, different schemes for joystick control were
implemented. One is calledStickSpeed, in which the walking speed is completely controlled by
the three axes of the joystick, the accelerator is used to switch between head control modes, the
walking type can be changed with button 8, and all special actions can be generated by holding
button 6 pressed and moving the accelerator.

Another scheme forJoystick Motion Tester Dialogis calledAcceleratorSpeed: the accelerator
is used to control the forward walking speed, the axes are only used for sideways speed and
direction, and walk types can be changed with button 6.

Commands will only be sent via the wireless network if they differ from the previous com-
mand and at most every 300 ms, because the router throughput and especially its response times
do not allow much more. So whirling around the joystick will definitely not encourage the robot
to do the same.

J.6 Color Calibration

J.6.1 The Color Table Dialog

TheColor Table Dialog(cf. Fig. J.21) is used to create color tables for image processing. The
current image from the simulator, a logfile, or the robot’s camera (via WLAN) is shown top right
(cf. Fig. J.21). Beneath the same image can be seen, segmented with the current color table.
Choosing a color class and clicking with the left button on a pixel in one of the two images will
assign the color class to the4 × 4 × 4 cube in YUV color space according to the color value of
the pixel. The result takes effect immediately and the segmented image will be updated. Clicking
with the right button on a pixel will remove the according color class assignment. There are also

J.6. COLOR CALIBRATION 183

Figure J.21: The Color Table Dialog

functions to undo the last assignment, to clear all assignments for a whole color class and to reset
the complete table.

To speed up the process of creating a color table, pixels with no neighbors of the same color
class can be removed by pressing theremovebutton. For large areas of the same color class, it
is useful to add pixels with at least a given count of neighbors and a maximum distance in the
color space. This can be done by pressing themedianbutton. Both optimizations can work with
the selected color class or with all colors (all colors checkbox selected). If existing assignments
should not be overridden,allow reassigncheckbox should not be selected to prevent unwanted
changes.

With auto-remove/medianenabled, the optimizations are triggered with every incoming im-
age. This is useful if logfiles with specific colors have been recorded. The color table can be
created without many manual assignments.

After having assigned all colors needed, the table can be sent to the robot via WLAN or saved
to a file. The GT2003 vision modules need a file namedcoltable.c64. It is also possible to load
an existing file and to modify it.

J.6.2 HSI Tool Dialog

This tool uses the HSI color space to create a color table. It allows the user to specify the min-
imum and maximum values for hue, saturation, and intensity for each color class using sliders,
and it gives an instant feedback by real time color classification of four images at the same
time. These images are directly taken from the memory ofRobotControland can be held as long
as needed. It is also possible to update an image simultaneously with the one in the memory of

184 APPENDIX J. ROBOTCONTROL USAGE

Figure J.22: The HSI Tool Dialog

RobotControl. The tool saves the color table both in HSI and YUV format. By selecting an image
there is another dialog with a zoomed view (cf. Fig.J.23) of it and the belonging color classified
image. In this dialog the color class can simply be edited by selecting single pixels. There is also
an undo function for several steps.

This HSI approach leads to good results very quickly by defining big sectors in the color
space and it is more tolerant against changing light conditions. The tool can be combined with
the other color table tool using YUV color space. First, the HSI tool is used to quickly generate
a color table and the YUV tool can be employed for fine tuning if required.

Dialog Structure. The main dialog (cf. Fig.J.22) consists of two parts. In the upper half are
spaces for four RGB images and below them the corresponding color classified images will be
displayed. Below each space there are buttons for capturing an image, and at the left is a check
box for an automatic update of the image above it.

In the lower half of the dialog most of the controls are located. There is a combo box with
entries for all color classes used by the image processing module, a button for loading HSI color
tables, a button for saving the HSI and the corresponding YUV color table, and six sliders for
determining the range of the selected color class in the HSI color system. An HSI color class
consists of a minimum and a maximum value for hue (H), saturation (S), and intensity (I).

Main Dialog. With thecapturebuttons in the upper half of the main dialog (cf. Fig.J.22) the
actual image thatRobotControlhas in memory can be saved. It can be done for four images.
When the box beforeupdatebelow the left place is checked, this image is updated automatically,
whenRobotControlgets a new image from the robot or a log file. The color classified image will
be updated automatically when you change the range of a color class.

With the combo box at the lower left of the dialog the color class to be edited can be selected.
The sliders show the minimum and maximum values of this color class. The ranges for H, S,

J.6. COLOR CALIBRATION 185

and I can be modified by changing the positions of the sliders. While moving a slider the color
classified image is permanently updated.

The range of values for the hue of a color class goes from 0 to 360, and for saturation and
for intensity from 0 to 100. Because the value for hue in HSI color system lies on a circle, it
is possible that the maximum value for this range is smaller than the minimum value. For a red
color, e. g., the minimum of the hue range could be 350 and the maximum could be 15. For
saturation and intensity the minimum value should be below the maximum value.

The color table can be saved by pressing theSavebutton. It appears a file dialog where
the destination and the name of the color table can be selected. The suffix.hsi will be added
automatically. A YUV color table converted from the HSI color table will also be saved with the
same name and the suffix.c64.

An HSI color table can be load by pressing theLoadbutton. It can be selected in the appearing
dialog. It is only possible to load HSI color tables. YUV color tables are not supported yet by the
HSI tool.

Figure J.23: The HSI Tool Zoom Dialog

Zoom Dialog. By performing a click with the left mouse button on one of the RGB images,
another dialog window with a zoomed view (cf. Fig.J.23) of the selected image and the belonging
color classified image will appear. In this dialog it is possible to improve the precision of the
ranges for color classes by selecting single pixels. At the lower left the combo box with the color
classes to edit is located. There is also anUndobutton for the last six changes.

By pressing the left or the right mouse button on a pixel in one of the zoomed images the
selected color class will be modified. If the left mouse button has been pressed and the color of
the selected pixel lies outside the color class, the range will be enlarged until the values for hue,
saturation, and intensity are inside this range. If the right mouse button has been pressed and the
selected pixel lies inside the range of the color class, the range will be reduced until the values
for hue, saturation, and intensity are outside of it.

By selecting single pixels, it is possible to determine which color should belong or not belong
to the chosen color class. Thus precision of the class can be improved.

186 APPENDIX J. ROBOTCONTROL USAGE

J.6.3 The TSL Color Segmentation Dialog

The main idea of color segmentation is to partition the chrominance space into subspaces, where
each subspace represents exactly one color. The algorithmic performance of color classification
depends on the chosen chrominance space. The reason for that is, that the complexity of color
segmentation strongly depends on the shape of the subspaces. If the normal vectors of all bound-
ing hyperplanes are parallel to the unit vectors of the chrominance space coordinate system, then
the color assignment can be done at highest efficiency. Therefore, we define a new chrominance
space where all relevant colors can be extracted by using a set of thresholdstc1, . . . , t

c
6 per color

c. For our purpose, a classification is needed to distinguish between the main nine RoboCup col-
ors (green, sky-blue, yellow, orange, pink, dark blue, red, black and white). The so-called TSL*
chroma-space based color-segmentation is more robust against luminance variation than similar
YUV-based algorithms.

The TSL Dialog is a powerful tool for creating a set of thresholds for a robust color classifi-
cation. On the left side of the dialogbox, two images are displayed. The upper images contains
the raw data (either camera data or simulator output). The lower images shows the result of the
color classification.

The user can select a color (e.g. ”yellow” in theSelect colorlist in Fig. J.24) and a corre-
sponding region in the image by clicking on the upper left and lower right corners of a rectangle.
Then, a histogram of each color component (T’, S’, and L’) is calculated in real-time and dis-
played immediately. By pressing theAutobutton, threshold values are set automatically. Using
the sliders, the user can adjust and optimize the thresholds (in Fig.J.24: tyellow

1 , . . . , tyellow
6) man-

ually. The influence of parameter values on the color classification can be seen in the lower left
image. The robustness of the classification can be checked by adding noise using theNoiseslider
to the original image.

Figure J.24: The TSL Color Table Tool.

If areas overlap, a classification is not unique. Thus, the order of color classifications is im-
portant. With theUp andDown buttons, the priority of a selected color can be changed. The

J.7. OTHER TOOLS 187

priority is displayed in theTSL Orderlist. Settings can be saved and reloaded by using theLoad
andSavebuttons. TheSave YUVbutton stores the settings in the conventional YUV color table
format. A set of threshold values can be send to a connected robot by clicking theSendbutton.

J.6.4 Camera Toolbar

Figure J.25: The Camera Toolbar

The Camera Toolbar(cf. Fig. J.25) is used to set the parameters that are provided by the
robot’s camera. These parameters are set with the combo boxes. White balance may be set to
indoor, outdoor, or FL mode. Shutter speed may be selected from slow, medium, or fast. Finally
low, medium, or high camera gain can be chosen.

Thesend to robotbutton sends the selected parameters via the wireless network to the robot.
The new settings are applied immediately. When viewing the camera pictures with the image
viewer (cf. Sect.J.3.1) the effects of different camera settings can be observed.

Thesavebutton writes the settings to a file namedcamera.cfg. This file is loaded at the start
of RobotControl to initialize theCamera Toolbarwith its contents. But more important this file
is copied to the memory stick and loaded when booting the robot. The settings from this file are
used on the robot unless different parameters are sent with the toolbar.

J.7 Other Tools

J.7.1 Debug Message Generator Dialog

Figure J.26: The Debug Message Generator Dialog

In addition to theTest Data Generatordescribed inE.2, theDebug Message Generator Di-
alog (cf. Fig. J.26) can be used to generate less common debug messages for which no special
dialog exists. TheTest Data Generatoris usually easier to use and offers more features. The need
to use theDebug Message Generator Dialogmight arise if more than 10 parameters of a module

188 APPENDIX J. ROBOTCONTROL USAGE

need to be updated in one go. The combo box is used to select what type of debug message is
generated. When pressing thesendbutton a message will be generated by parsing the input in
the text field. The dialog may be extended easily by adding the code to parse the text input into a
debug message. Therefore it allows generating new debug messages withRobotControlwithout
having to create a new dialog. It is used, e. g., to send a new set of parameters to the walking
engine. By this it is possible to change the walking style at runtime and therefore develop new
walks very quickly. Another application is to test playing acoustic messages on the robot by
sending the corresponding debug message.

References

[1] Simrobot homepage. http://www.tzi.de/simrobot.

[2] R. Brunn, U. D̈uffert, M. J̈ungel, T. Laue, M. L̈otzsch, S. Petters, M. Risler, T. Röfer,
K. Spiess, and A. Sztybryc. Germanteam 2001. InRoboCup 2001, number 2377 in Lecture
Notes in Artificial Intelligence, pages 705–708. Springer, 2002.

[3] H.-D. Burkhard, U. D̈uffert, J. Hoffmann, M. J̈ungel, M. L̈otzsch, R. Brunn, M. Kallnik,
N. Kuntze, M. Kunz, S. Petters, M. Risler, O. v. Stryk, N. Koschmieder, T. Laue, T. Röfer,
K. Spiess, A. Cesarz, I. Dahm, M. Hebbel, W. Nowak, and J. Ziegler. GermanTeam 2002,
2002. Only available online: http://www.tzi.de/kogrob/papers/GermanTeam2002.pdf.

[4] H.D. Burkhard, J. Bach, R. Berger, B. Brunswieck, and M. Gollin. Mental models for robot
control. In M. Beetz et al., editor,Plan Based Control of Robotic Agents, number 2466 in
Lecture Notes in Artificial Intelligence. Springer, 2002. To appear.

[5] Ingo Dahm, Sebastian Deutsch, Matthias Hebbel, and André Osterhues. Robust color clas-
sification for robot soccer. In7th International Workshop on RoboCup 2003 (Robot World
Cup Soccer Games and Conferences), Lecture Notes in Artificial Intelligence. Springer,
2004. to appear.

[6] David C. Fallside. W3C recommendation: XML schema part 0: Primer. 2001.
http://www.w3.org/TR/xmlschema-0/.

[7] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo localization: Efficient position
estimation for mobile robots. InProc. of the National Conference on Artificial Intelligence,
1999.

[8] D. Gutmann, J.-S. Fox. An experimental comparison of localization methods continued. In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Lau-
sanne, Switzerland, 2002. EPFL.

[9] V. Jagannathan, R. Dodhiawala, and L. Baum.Blackboard Architectures and Applications.
Academic Press, Inc., 1989.

[10] Matthias J̈ungel, Jan Hoffmann, and Martin Lötzsch. A real-time auto-adjusting vision
system for robotic soccer. In7th International Workshop on RoboCup 2003 (Robot World

189

190 REFERENCES

Cup Soccer Games and Conferences), Lecture Notes in Artificial Intelligence. Springer,
2004. to appear.

[11] S. Lenser and M. Veloso. Sensor resetting localization for poorly modeled mobile robots.
In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), 2000.

[12] Martin Lötzsch. XABSL web site. http://www.ki.informatik.hu-berlin.de/XABSL.

[13] Martin Lötzsch, Joscha Bach, Hans-Dieter Burkhard, and Matthias Jüngel. Designing agent
behavior with the extensible agent behavior specification language XABSL. In7th Inter-
national Workshop on RoboCup 2003 (Robot World Cup Soccer Games and Conferences),
Lecture Notes in Artificial Intelligence. Springer, 2004. to appear.

[14] T. Röfer. Strategies for using a simulation in the development of the Bremen Autonomous
Wheelchair. In R. Zobel and D. Moeller, editors,Simulation-Past, Present and Future,
pages 460–464. Society for Computer Simulation International, 1998.

[15] T. Röfer and M. J̈ungel. Vision-based fast and reactive monte-carlo localization. InIEEE
International Conference on Robotics and Automation, pages 856–861, Taipei, Taiwan,
2003. IEEE.

[16] T. Röfer and M. J̈ungel. Fast and robust edge-based localization in the sony four-legged
robot league. In7th International Workshop on RoboCup 2003 (Robot World Cup Soccer
Games and Conferences), Lecture Notes in Artificial Intelligence, Padova, Italy, 2004.

[17] D. Schulz, W. Burgard, D. Fox, and A.B. Cremers. Tracking multiple moving targets with
a mobile robot using particle filters and statistical data association. InProc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2001.

[18] S. Thrun, D. Fox, and W. Burgard. Monte carlo localization with mixture proposal dis-
tribution. In Proc. of the National Conference on Artificial Intelligence, pages 859–865,
2000.

	1 Introduction
	1.1 History
	1.2 Scientific Goals
	1.2.1 Humboldt-Universität zu Berlin
	1.2.2 Technische Universität Darmstadt
	1.2.3 Universität Bremen
	1.2.4 Universität Dortmund

	1.3 Contributing Team Members
	1.3.1 Aibo Team Humboldt (Humboldt-Universität zu Berlin)
	1.3.2 Darmstadt Dribbling Dackels (Technische Universität Darmstadt)
	1.3.3 Bremen Byters (Universität Bremen)
	1.3.4 Microsoft Hellhounds (Universität Dortmund)

	1.4 Structure of this Document

	2 Architecture
	2.1 Platform-Independence
	2.1.1 Motivation
	2.1.2 Realization
	2.1.3 Supported Platforms
	2.1.4 Math Library
	2.1.4.1 Provided Data Types

	2.2 Multiple Team Support
	2.2.1 Tasks
	2.2.2 Debugging Support
	2.2.3 Process-Layouts
	2.2.3.1 Communication between Processes
	2.2.3.2 Different Layouts

	2.2.4 Make Engine
	2.2.4.1 Dependencies
	2.2.4.2 Realization
	2.2.4.3 Debugging and Optimization
	2.2.4.4 Automation and Integration

	3 Modules in GT2003
	3.1 Body Sensor Processing
	3.2 Vision
	3.2.1 Using a Horizon-Aligned Grid
	3.2.2 Detecting Points on Edges
	3.2.3 Detecting the Ball
	3.2.4 Detecting Flags
	3.2.5 Detecting Goals
	3.2.6 Detecting Robots
	3.2.7 Detecting Obstacles

	3.3 Self-Localization
	3.3.1 Single Landmark Self-Locator
	3.3.1.1 Approach
	3.3.1.2 Results

	3.3.2 Monte-Carlo Self-Locator
	3.3.2.1 Motion Model
	3.3.2.2 Observation Model
	3.3.2.3 Resampling
	3.3.2.4 Estimating the Pose of the Robot
	3.3.2.5 Results

	3.3.3 Lines Self-Locator
	3.3.3.1 Observation Model
	3.3.3.2 Drawing from Observations
	3.3.3.3 Correcting the Posture Based on Measurements
	3.3.3.4 Experiments

	3.4 Ball Modeling
	3.4.1 Ball Position and Ball Speed
	3.4.2 Communicated Information About the Ball

	3.5 Obstacle Model
	3.5.1 Updating the Model with new Sensor Data
	3.5.2 Updating the Model Using Odometry

	3.6 Collision Detector
	3.7 Player Modeling
	3.7.1 Determining Robot Positions from Distributions
	3.7.2 Integration of Team Messages

	3.8 Behavior Control
	3.8.1 The Extensible Agent Behavior Specification Language XABSL
	3.8.1.1 The Architecture behind XABSL
	3.8.1.2 The XML Specification

	3.8.2 The Behaviors of the GermanTeam
	3.8.3 Continuous Basic Behaviors

	3.9 Motion
	3.9.1 Walking
	3.9.1.1 Approach
	3.9.1.2 Parameters
	3.9.1.3 Odometry correction values
	3.9.1.4 Inverse kinematics

	3.9.2 Special Actions
	3.9.3 Head Motion Control
	3.9.3.1 Head Control Modes
	3.9.3.2 HeadControl State Machine
	3.9.3.3 Head Path Planner
	3.9.3.4 Joint Protection

	4 Challenges
	4.1 Black And White Ball
	4.1.1 Detection of the ball
	4.1.2 Behavior for the Ball Challenge
	4.1.3 Results

	4.2 Localization
	4.2.1 Behavior Control
	4.2.2 Head Control
	4.2.3 Results

	4.3 Obstacle Avoidance

	5 Tools
	5.1 SimGT2003
	5.1.1 Simulation Kernel
	5.1.2 User Interface
	5.1.3 Controller

	5.2 RobotControl
	5.3 Router
	5.4 Motion Net Code Generator
	5.5 Emon Log Parser

	6 Conclusions and Outlook
	6.1 The Competitions in Padova
	6.2 Future Work
	6.2.1 Humboldt-Universität zu Berlin
	6.2.2 Technische Universität Darmstadt
	6.2.3 Universität Bremen
	6.2.4 Universität Dortmund

	7 Acknowledgments
	A Installation
	A.1 Required Software
	A.2 Source Code
	A.2.1 Robot Code
	A.2.2 Tools Code

	A.3 The Developer Studio Workspace GT2003.dsw

	B Getting Started
	B.1 First Steps with RobotControl
	B.1.1 Looking at Images
	B.1.2 Discover the Simulator

	B.2 Playing Soccer with the GermanTeam
	B.2.1 Preparing Memory Sticks
	B.2.2 Establishing a WLAN Connection
	B.2.3 Operate the Robots

	B.3 Explore the Possibilities of the Robot
	B.3.1 Send Images from the Robot and Create a Color Table
	B.3.2 Create Own Kicks
	B.3.3 Test simple behaviors
	B.3.3.1 Test Basic Behaviors
	B.3.3.2 Test Options

	B.4 Configuration Files
	B.4.1 location.cfg
	B.4.2 coltable.cfg
	B.4.3 camera.cfg
	B.4.4 player.cfg
	B.4.5 robot.cfg
	B.4.6 wlanconf.txt

	C Processes, Senders, and Receivers
	C.1 Motivation
	C.2 Creating a Process
	C.3 Communication
	C.3.1 Packages
	C.3.2 Senders
	C.3.3 Receivers

	D Streams
	D.1 Motivation
	D.2 The Classes Provided
	D.3 Streaming Data
	D.4 Making Classes Streamable
	D.4.1 Streaming Operators
	D.4.2 Streaming using read() and write()

	D.5 Implementing New Streams

	E Debugging Mechanisms
	E.1 Message Queues
	E.2 Generic Debug Data
	E.3 Debug Keys
	E.4 Debug Macros
	E.5 Debug Drawings
	E.6 Modules and Solutions
	E.7 Stopwatch

	F XABSL Language Reference
	F.1 Modularity
	F.2 Symbol Definitions
	F.3 Basic Behavior Prototypes
	F.4 Prototypes for Options
	F.5 Options
	F.6 States
	F.7 Decision Trees
	F.8 Boolean Expressions
	F.9 Decimal Expressions
	F.10 Agents

	G XABSL Tools
	G.1 Adopting the Makefile
	G.2 Using the Makefile

	H The Xabsl2Engine Class Library
	H.1 Files of the Xabsl2Engine
	H.2 Running the Xabsl2Engine on a Specific Target Platform
	H.3 Creating a New Engine
	H.4 Registering Symbols
	H.5 Registering Basic Behaviors
	H.6 Creating the Option Graph
	H.7 Executing the Engine
	H.8 Debugging Interfaces

	I SimGT2003 Usage
	I.1 Introduction
	I.2 Getting Started
	I.3 Views
	I.3.1 Scene View
	I.3.2 Robot View
	I.3.3 Information Views
	I.3.3.1 Image Views
	I.3.3.2 Field Views
	I.3.3.3 Xabsl2 Views

	I.4 Scene Description Files
	I.5 Console Commands
	I.5.1 Initialization Commands
	I.5.2 Global Commands
	I.5.3 Robot Commands

	I.6 Examples
	I.6.1 Recording a Log File
	I.6.2 Replaying a Log File
	I.6.3 Remote Control

	J RobotControl Usage
	J.1 Starting RobotControl
	J.2 Application Framework
	J.2.1 The Debug Keys Toolbar
	J.2.2 The Configuration Toolbar
	J.2.3 The Settings Dialog
	J.2.4 The Log Player Toolbar
	J.2.5 WLan Toolbar
	J.2.6 Game Toolbar

	J.3 Visualization
	J.3.1 Image Viewer and Large Image Viewer
	J.3.2 Field View and Radar Viewer
	J.3.3 Radar Viewer 3D
	J.3.4 Color Space Dialog
	J.3.5 Value History Dialog
	J.3.6 Time Diagram Dialog

	J.4 The Simulator
	J.5 Debug Interfaces for Modules
	J.5.1 Xabsl2 Behavior Tester
	J.5.2 Motion Tester Dialog
	J.5.3 Head Motion Tester Dialog
	J.5.4 Mof Tester Dialog
	J.5.5 Joystick Motion Tester Dialog

	J.6 Color Calibration
	J.6.1 The Color Table Dialog
	J.6.2 HSI Tool Dialog
	J.6.3 The TSL Color Segmentation Dialog
	J.6.4 Camera Toolbar

	J.7 Other Tools
	J.7.1 Debug Message Generator Dialog

